Bi2WO6/C3N4 S-Scheme Heterojunction with a Built-In Electric Field for Photocatalytic CO2 Reduction

被引:16
|
作者
Tang, Qiaoya [1 ]
Tao, Wei [1 ]
Hu, Jianqiang [1 ]
Gui, Tian [1 ]
Wang, Zhipeng [1 ]
Xiao, Yuting [2 ]
Song, Renjie [2 ]
Jiang, Yong [3 ]
Guo, Shien [1 ]
机构
[1] Jiangxi Normal Univ, Inst Adv Mat IAM, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
[2] Nanchang Hangkong Univ, Key Lab Jiangxi Prov Persistent Pollutants Contro, Nanchang 330063, Peoples R China
[3] Guangxi Univ Sci & Technol, Coll Biol & Chem Engn, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi2WO6/C3N4; S-scheme; 2D/2D heterojunction; interfacialchargetransfer; photocatalytic CO2 reduction; CARBON NITRIDE; CONSTRUCTION; MORPHOLOGY; G-C3N4; WATER;
D O I
10.1021/acsanm.3c03349
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Converting CO2 into renewable fuels by solar energy has been considered an ideal strategy to mitigate the climate crisis and address the fossil fuel depletion problem. However, severe charge carrier recombination and sluggish interfacial reaction dynamics make it a challenge to achieve high conversion efficiency. Herein, a unique 2D/2D step-scheme (S-scheme) photocatalyst of Bi2WO6/C3N4 (BWO/CN) is constructed by a facile electrostatic self-assembly strategy. The ultrathin 2D/2D heterostructure endowed the BWO/ CN hybrid with abundant contact interfaces, short charge-transport distance, and relatively more accessible reaction sites. Besides, the differences of work function between CN and BWO induced the formation of a built-in electric field, resulting in much enhanced interfacial charge transfer/separation rates. As a result, the optimized BWO/CN heterojunction exhibits significantly improved photocatalytic performance toward CO2 reduction, which is approximately 2.8-fold higher than that of its CN counterpart. The accelerated S-scheme charge-transfer mechanism is systematically corroborated by X-ray photoelectron spectroscopy, photo-irradiated Kelvin probe force microscopy, and electron spin resonance. This research may provide a facile protocol for the rational design of an S-scheme face-to-face 2D/2D heterojunction for efficient CO2 conversion.
引用
收藏
页码:17130 / 17139
页数:10
相关论文
共 50 条
  • [1] Construction of a hierarchical BiOBr/C3N4 S-scheme heterojunction for selective photocatalytic CO2 reduction towards CO
    Tao, Wei
    Tang, Qiaoya
    Hu, Jianqiang
    Wang, Zhipeng
    Jiang, Baojiang
    Xiao, Yuting
    Song, Renjie
    Guo, Shien
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24999 - 25007
  • [2] Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation
    Zhang, Bingke
    Liu, Yaxin
    Wang, Dongbo
    He, Wen
    Fang, Xuan
    Zhao, Chenchen
    Pan, Jingwen
    Liu, Donghao
    Liu, Sihang
    Chen, Tianyuan
    Zhao, Liancheng
    Wang, Jinzhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [3] CdS/WO3 S-scheme heterojunction with improved photocatalytic CO2 reduction activity
    Sun, Yuzhen
    Han, Yuting
    Song, Xinyu
    Huang, Bing
    Ma, Xinlong
    Xing, Rong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2022, 233
  • [4] Engineering Built-In Electric Field Microenvironment of CQDs/g-C3N4 Heterojunction for Efficient Photocatalytic CO2 Reduction
    Xu, Yun
    Hou, Weidong
    Huang, Kai
    Guo, Huazhang
    Wang, Zeming
    Lian, Cheng
    Zhang, Jiye
    Wu, Deli
    Lei, Zhendong
    Liu, Zheng
    Wang, Liang
    ADVANCED SCIENCE, 2024, 11 (28)
  • [5] Enhanced photocatalytic CO2 reduction in floatable CMF/Bi2WO6/C3N4 gas-liquid-solid three-phase heterojunction system
    Bai, Ruxue
    Niu, Jiahao
    Zhang, Xueli
    Li, Qiurong
    Dong, Chenlong
    Shen, Qianqian
    Xue, Jinbo
    Zhu, Yongfa
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 374
  • [6] Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite for efficient water decontamination
    Cai, Mingjie
    Liu, Yanping
    Dong, Kexin
    Chen, Xiaobo
    Li, Shijie
    CHINESE JOURNAL OF CATALYSIS, 2023, 52 : 239 - 251
  • [7] Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4
    Yan, Peipei
    Li, Di
    Ma, Xinguo
    Xue, Juanqin
    Zhang, Yujie
    Liu, Manbo
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2018, 17 (08) : 1084 - 1090
  • [8] ZnCo2S4/Bi2WO6 S-scheme heterojunction for efficient photocatalytic hydrogen evolution: Process and mechanism
    Zhang, Jiajie
    Wang, Chuqiao
    Zeng, Xiaofeng
    Liu, Zhihui
    Ning, Zhihui
    Peng, Xiaoming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 441 - 450
  • [9] Engineering g-C3N4/Bi2WO6 Composite Photocatalyst for Enhanced Photocatalytic CO2 Reduction
    Chen, Wenxing
    Ni, Lingzhe
    Ogino, Kenji
    Sun, Hong
    Bi, Jinghui
    Hou, Huilin
    COATINGS, 2025, 15 (01):
  • [10] Preparation and photocatalytic properties of Bi2WO6/g-C3N4
    Qi, Shuyan
    Zhang, Ruiyan
    Zhang, Yiming
    Liu, Xueting
    Xu, Huanyan
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 132