Research on pulse charging current of lithium-ion batteries for electric vehicles in low-temperature environment

被引:6
|
作者
Tang, Aihua [1 ]
Gong, Peng [1 ]
Huang, Yukun [1 ]
Wu, Xinyu [1 ]
Yu, Quanqing [2 ]
机构
[1] Chongqing Univ Technol, Sch Vehicle Engn, Chongqing 400054, Peoples R China
[2] Harbin Inst Technol, Sch Automot Engn, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Low-temperature environment; Pulse current; Optimal frequency; Three-dimensional response surface; MODEL;
D O I
10.1016/j.egyr.2023.04.226
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The scale of the electric vehicle (EV) industry is expanding in the current new energy industry reform. Lithium-ion batteries (LIBs) have also gotten a lot of interest as the power source for EVs. However, the safety and remaining life of LIB are highly tied to the charging strategy adopted. Particularly, fast charging at low temperatures can cause lithium to deposit on the anode of the battery, intensifying heat production and even evolving into thermal runaway of the battery. Based on the simplified battery Alternating current (AC) impedance model, the optimal frequency of pulse current is analyzed. Considering the influence of state of charge (SOC) and temperature on the battery impedance, a three-dimensional response surface about the optimal frequency, temperature and SOC was established using Mendeley data. To simulate LIB pulse strategy charging in a cold environment, the equivalent circuit model (ECM) is coupled with a simple battery heating model. The three-dimensional response surface is employed to instantly determine the pulse frequency. The simulation results demonstrate that both the bi-directional pulse current charging strategy with optimal frequency and the positive pulse current charging strategy with optimal frequency have faster charging time and better temperature rise effect than the constant current (CC) charging strategy, and can significantly eliminate the polarization voltage of the battery at low temperatures. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1447 / 1457
页数:11
相关论文
共 50 条
  • [41] Research progress of low-temperature lithium-ion battery
    Liang J.
    Li Y.
    Yuan H.
    Wang Y.
    Wu Y.
    Wang H.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (11): : 2155 - 2174
  • [42] Research progress in low-temperature lithium-ion capacitors
    Xu Y.
    Li C.
    Ren X.
    Zhang X.
    Wang K.
    Sun X.
    Ma Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (08): : 1509 - 1520
  • [43] Fluorinated Solvent Molecule Tuning Enables Fast-Charging and Low-Temperature Lithium-Ion Batteries
    Mo, Yanbing
    Liu, Gaopan
    Yin, Yue
    Tao, Mingming
    Chen, Jiawei
    Peng, Yu
    Wang, Yonggang
    Yang, Yong
    Wang, Congxiao
    Dong, Xiaoli
    Xia, Yongyao
    ADVANCED ENERGY MATERIALS, 2023, 13 (32)
  • [44] A bibliometric analysis of lithium-ion batteries in electric vehicles
    Chen, Shichen
    Xiong, Jiangyong
    Qiu, Yayu
    Zhao, Yan
    Chen, Sainan
    JOURNAL OF ENERGY STORAGE, 2023, 63
  • [45] Modeling and Identification of Lithium-Ion Batteries for Electric Vehicles
    Quantmeyer, F.
    Liu-Henke, X.
    2013 INTERNATIONAL SYMPOSIUM ON ELECTRODYNAMIC AND MECHATRONIC SYSTEM (SELM 2013), 2013, : 19 - 20
  • [46] Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles
    You, Sukbeom
    Jung, Joosik
    Cheong, Kyeong-Beom
    Go, Jooyoung
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2011, 35 (06) : 649 - 656
  • [47] Immersion Cooling of Lithium-ion Batteries for Electric Vehicles
    Williams, Niall P.
    O'Shaughnessy, Seamus M.
    2022 28TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC 2022), 2022,
  • [48] Recycling lithium-ion batteries from electric vehicles
    Harper, Gavin
    Sommerville, Roberto
    Kendrick, Emma
    Driscoll, Laura
    Slater, Peter
    Stolkin, Rustam
    Walton, Allan
    Christensen, Paul
    Heidrich, Oliver
    Lambert, Simon
    Abbott, Andrew
    Ryder, Karl S.
    Gaines, Linda
    Anderson, Paul
    NATURE, 2019, 575 (7781) : 75 - 86
  • [49] Degradation analysis of lithium-ion batteries in electric vehicles
    Cugnet, Mikael G.
    Grolleau, Sebastien
    Delaille, Arnaud
    Perrin, Marion
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [50] Electrothermal Modeling of Lithium-Ion Batteries for Electric Vehicles
    Yang, Zhuo
    Patil, Devendra
    Fahimi, Babak
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (01) : 170 - 179