Cell-autonomous and non-cell-autonomous roles of NKCC1 in regulating neural stem cell quiescence in the hippocampal dentate gyrus

被引:5
|
作者
Zhang, Feng [1 ,2 ]
Yoon, Kijun [1 ,2 ]
Kim, Nam-Shik [1 ,2 ]
Ming, Guo-li [1 ,2 ,3 ,4 ,5 ]
Song, Hongjun [1 ,2 ,3 ,5 ,6 ]
机构
[1] Dept Neurosci, Philadelphia, PA 19104 USA
[2] Mahoney Inst Neurosci, Philadelphia, PA 19104 USA
[3] Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[4] Dept Psychiat, Philadelphia, PA 19104 USA
[5] Inst Regenerat Med, Philadelphia, PA 19104 USA
[6] Perelman Sch Med, Epigenet Inst, Philadelphia, PA 19104 USA
来源
STEM CELL REPORTS | 2023年 / 18卷 / 07期
基金
美国国家卫生研究院;
关键词
NEWLY GENERATED NEURONS; IMMUNOREACTIVE NEURONS; EMBRYONIC ORIGIN; NERVOUS-SYSTEM; ADULT; NEUROGENESIS; INHIBITION; MATURATION; INTERPLAY; PROTEIN;
D O I
10.1016/j.stemcr.2023.05.021
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Quiescence is a hallmark of adult neural stem cells (NSCs) in the mammalian brain, and establishment and maintenance of quiescence is essential for life-long continuous neurogenesis. How NSCs in the dentate gyrus (DG) of the hippocampus acquire their quiescence during early postnatal stages and continuously maintain quiescence in adulthood is poorly understood. Here, we show that Hopx-CreERT2-mediated conditional deletion of Nkcc1, which encodes a chloride importer, in mouse DG NSCs impairs both their quiescence acquisition at early postnatal stages and quiescence maintenance in adulthood. Furthermore, PV-CreERT2-mediated deletion of Nkcc1 in PV interneurons in the adult mouse brain leads to activation of quiescent DG NSCs, resulting in an expanded NSC pool. Consistently, pharmacological inhibition of NKCC1 promotes NSC proliferation in both early postnatal and adult mouse DG. Together, our study reveals both cellautonomous and non-cell-autonomous roles of NKCC1 in regulating the acquisition and maintenance of NSC quiescence in the mammalian hippocampus.
引用
收藏
页码:1468 / 1481
页数:14
相关论文
共 50 条
  • [31] Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms
    Yan Zhang
    Maria H. Ulvmar
    Lukas Stanczuk
    Ines Martinez-Corral
    Maike Frye
    Kari Alitalo
    Taija Mäkinen
    Nature Communications, 9
  • [32] Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms
    Zhang, Yan
    Ulvmar, Maria H.
    Stanczuk, Lukas
    Martinez-Corral, Ines
    Frye, Maike
    Alitalo, Kari
    Makinen, Taija
    NATURE COMMUNICATIONS, 2018, 9
  • [33] Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation
    Wing, Kajsa
    Yamaguchi, Tomoyuki
    Sakaguchi, Shimon
    TRENDS IN IMMUNOLOGY, 2011, 32 (09) : 428 - 433
  • [34] Developmental Profiling of Postnatal Dentate Gyrus Progenitors Provides Evidence For Dynamic Cell-Autonomous Regulation
    Gilley, Jennifer A.
    Yang, Cui-Ping
    Kernie, Steven G.
    HIPPOCAMPUS, 2011, 21 (01) : 33 - 47
  • [35] Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo
    Yan, Hua
    Chin, Mei-Ling
    Horvath, Elizabeth A.
    Kane, Elizabeth A.
    Pfleger, Cathie M.
    JOURNAL OF CELL SCIENCE, 2009, 122 (09) : 1461 - 1470
  • [36] Cell-autonomous PLC81 modulation of neural stem/progenitor cell proliferation during adult hippocampal neurogenesis
    Song, Bokyung
    Kim, Chong-Hyun
    NEUROSCIENCE LETTERS, 2022, 791
  • [37] Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila
    Becker, Henrike
    Renner, Simone
    Technau, Gerhard M.
    Berger, Christian
    PLOS GENETICS, 2016, 12 (03):
  • [38] Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo
    McAvoy, Kathleen M.
    Soit, Hameetha Rajamohamed
    Marsh, Galina
    Peterson, Michael
    Reynolds, Taylor L.
    Gagnon, Jake
    Geisler, Sarah
    Leach, Prescott
    Roberts, Chris
    Cahir-McFarland, Ellen
    Ransohoff, Richard M.
    Crotti, Andrea
    PLOS ONE, 2019, 14 (08):
  • [39] Cell-autonomous regulation of epithelial cell quiescence by calcium channel Trpv6
    Xin, Yi
    Malick, Allison
    Hu, Meiqin
    Liu, Chengdong
    Batah, Heya
    Xu, Haoxing
    Duan, Cunming
    ELIFE, 2019, 8
  • [40] Cell-Autonomous and Non-Cell-Autonomous Mechanisms of HGF/MET-Driven Resistance to Targeted Therapies: From Basic Research to a Clinical Perspective
    Corso, Simona
    Giordano, Silvia
    CANCER DISCOVERY, 2013, 3 (09) : 978 - 992