An Investigation on Joint Data Assimilation of a Radar Network and Ground-Based Profiling Platforms for Forecasting Convective Storms

被引:3
作者
Huo, Zhaoyang [1 ,2 ]
Liu, Yubao [1 ,2 ]
Shi, Yueqin [3 ]
Chen, Baojun [3 ]
Fan, Hang [1 ,2 ]
Li, Yang [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Nanjing, Peoples R China
[3] China Meteorol Adm, Key Lab Cloud Precipitat Phys & Weather Modificat, Beijing, Peoples R China
关键词
Radars; Radar observations; Numerical weather prediction; forecasting; Data assimilation; Mesoscale models; MESOGAMMA-SCALE ANALYSIS; ENSEMBLE KALMAN FILTER; US-ARMY TEST; BOUNDARY-LAYER; WIND PROFILER; PART I; EVALUATION COMMAND; NUMERICAL WEATHER; MOIST CONVECTION; DOPPLER LIDAR;
D O I
10.1175/MWR-D-22-0332.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A summer convective precipitation case, occurring in eastern China on 16-17 July 2020, is selected to investi-gate the impact of joint assimilation of ground-based profiling platforms and weather radars on forecasting convective storms using observational system simulation experiments (OSSEs). The simulated profiling platforms include the Doppler wind lidar (DWL), a wind profiler (WP), and a microwave radiometer (MWR). Results show that joint assimilation of WP and radar data produces a better analysis of convective dynamical structure than joint assimilation of DWL and radar data, since WP detects deeper layer winds. Joint assimilation of MWR and radar data enables rapid adjustment of temperature and humidity and thus, avoids the potential errors introduced by the latent heat term of the radar diabatic initialization in the early stage. Profiling observations in a horizontal spacing of 80 km provide fewer benefits for convective forecasting, while reducing the spacing to 40 km can dramatically improve model analysis and forecasts. Joint assimilation of multiple profiling observations in a 20-km horizontal spacing with radar data exhibits a beneficial synergistic effect and mitigates "the ramp-down issue" during the forecast stage. Assimilating profiling observations with an update interval less than 30 min does not have as pronounced an effect on convective forecasts as horizontal spacing. Furthermore, assimilating profiling ob-servations at a 20-km horizontal spacing can obtain accurate mesoscale background environment and forecast storms with an ability comparable to radar data assimilation. This work emphasizes the need to consider implementing a joint mesoscale detection system that incorporates weather radars and profiling observations for leveraging convective storm forecasting.
引用
收藏
页码:2049 / 2064
页数:16
相关论文
共 103 条
[1]   A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses [J].
Aksoy, Altug ;
Dowell, David C. ;
Snyder, Chris .
MONTHLY WEATHER REVIEW, 2009, 137 (06) :1805-1824
[2]   LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System [J].
Baker, Wayman E. ;
Atlas, Robert ;
Cardinali, Carla ;
Clement, Amy ;
Emmitt, George D. ;
Gentry, Bruce M. ;
Hardesty, R. Michael ;
Kaellen, Erland ;
Kavaya, Michael J. ;
Langland, Rolf ;
Ma, Zaizhong ;
Masutani, Michiko ;
McCarty, Will ;
Pierce, R. Bradley ;
Pu, Zhaoxia ;
Riishojgaard, Lars Peter ;
Ryan, James ;
Tucker, Sara ;
Weissmann, Martin ;
Yoe, James G. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (04) :543-564
[3]   The value of wind profiler data in US weather forecasting [J].
Benjamin, SG ;
Schwartz, BE ;
Szoke, EJ ;
Koch, SE .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (12) :1871-+
[4]   Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale [J].
Bick, T. ;
Simmer, C. ;
Troemel, S. ;
Wapler, K. ;
Franssen, H. -J. Hendricks ;
Stephan, K. ;
Blahak, U. ;
Schraff, C. ;
Reich, H. ;
Zeng, Y. ;
Potthast, R. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (696) :1490-1504
[5]   Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model [J].
Caumont, Olivier ;
Cimini, Domenico ;
Loehnert, Ulrich ;
Alados-Arboledas, Lucas ;
Bleisch, Rene ;
Buffa, Franco ;
Ferrario, Massimo Enrico ;
Haefele, Alexander ;
Huet, Thierry ;
Madonna, Fabio ;
Pace, Giandomenico .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (700) :2692-2704
[6]   The Value of Assimilating Different Ground-Based Profiling Networks on the Forecasts of Bore-Generating Nocturnal Convection [J].
Chipilski, Hristo G. ;
Wang, Xuguang ;
Parsons, David B. ;
Johnson, Aaron ;
Degelia, Samuel K. .
MONTHLY WEATHER REVIEW, 2022, 150 (06) :1273-1292
[7]   Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE [J].
Cintineo, Rebecca M. ;
Otkin, Jason A. ;
Jones, Thomas A. ;
Koch, Steven ;
Stensrud, David J. .
MONTHLY WEATHER REVIEW, 2016, 144 (09) :3159-3180
[8]   The data assimilation method "Latent Heat Nudging" assessed with the Dynamic State Index [J].
Claussnitzer, Antje ;
Schartner, Thomas ;
Nevir, Peter ;
Stephan, Klaus ;
Cubasch, Ulrich .
METEOROLOGISCHE ZEITSCHRIFT, 2011, 20 (02) :165-172
[9]   Impacts of Targeted AERI and Doppler Lidar Wind Retrievals on Short-Term Forecasts of the Initiation and Early Evolution of Thunderstorms [J].
Coniglio, Michael C. ;
Romine, Glen S. ;
Turner, David D. ;
Torn, Ryan D. .
MONTHLY WEATHER REVIEW, 2019, 147 (04) :1149-1170
[10]   Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry [J].
Crewell, Susanne ;
Loehnert, Ulrich .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (07) :2195-2201