Image super-resolution method based on attention aggregation hierarchy feature

被引:4
|
作者
Wang, Jianxin [1 ,2 ]
Zou, Yongsong [2 ]
Wu, Honglin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Hydraul & Environm Engn, Changsha 410114, Peoples R China
来源
VISUAL COMPUTER | 2024年 / 40卷 / 04期
关键词
Super-resolution; Hierarchical features; Shift operation; Attention mechanism; NETWORK;
D O I
10.1007/s00371-023-02968-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, single-image super-resolution (SISR) based on convolutional neural networks (CNNs) has encountered challenges, including the presence of numerous network parameters, limited receptive field, and the inability to capture global context information. In order to address these issues, we propose an image super-resolution method based on attention aggregation hierarchy feature (AHSR), which improves the performance of the super-resolution (SR) network through the optimization of convolutional operations and the integration of effective attention modules. AHSR first uses a high-frequency filter to bypass the rich low-frequency information, allowing the main network to focus on learning the high-frequency information. In order to aggregate spatial information within the image, expand the receptive field, and extract local structural features more effectively, we propose the utilization of the shift operation with zero parameters and zero triggers instead of spatial convolution. Additionally, we introduce a multi-Dconv head transposed attention module to improve the aggregation of cross-hierarchical feature information. This approach allows us to obtain enhanced features that incorporate contextual information. Extensive experimental results show that compared to other advanced SR models, the proposed AHSR method can better recover image details with fewer model parameters and less computational complexity.
引用
收藏
页码:2655 / 2666
页数:12
相关论文
共 50 条
  • [1] Image super-resolution method based on attention aggregation hierarchy feature
    Jianxin Wang
    Yongsong Zou
    Honglin Wu
    The Visual Computer, 2024, 40 : 2655 - 2666
  • [2] MAFT: An Image Super-Resolution Method Based on Mixed Attention and Feature Transfer
    Liu, Xin
    Li, Jing
    Cui, Yuanning
    Zhu, Wei
    Qian, Luhong
    WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 511 - 519
  • [3] Image Super-Resolution via Lightweight Attention-Directed Feature Aggregation Network
    Wang, Li
    Li, Ke
    Tang, Jingjing
    Liang, Yuying
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [4] Image super-resolution reconstruction based on feature map attention mechanism
    Chen, Yuantao
    Liu, Linwu
    Phonevilay, Volachith
    Gu, Ke
    Xia, Runlong
    Xie, Jingbo
    Zhang, Qian
    Yang, Kai
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4367 - 4380
  • [5] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [6] Light Field Image Super-Resolution Based on Feature Interaction Fusion and Attention Mechanism
    Xu, Xinyi
    Deng, Huiping
    Sen, Xiang
    Jin, Wu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [7] Image Super-Resolution Based on Residual Attention and Multi-Scale Feature Fusion
    Kou, Qiqi
    Zhao, Jiamin
    Cheng, Deqiang
    Su, Zhen
    Zhu, Xingguang
    IEEE ACCESS, 2023, 11 : 59530 - 59541
  • [8] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Xin Yang
    Hengrui Li
    Xiaochuan Li
    Cluster Computing, 2022, 25 : 3977 - 3992
  • [9] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Yang, Xin
    Li, Hengrui
    Li, Xiaochuan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3977 - 3992
  • [10] CT image super-resolution reconstruction based on global hybrid attention
    Chi, Jianning
    Sun, Zhiyi
    Wang, Huan
    Lyu, Pengfei
    Yu, Xiaosheng
    Wu, Chengdong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150