Advancing full-field metrology: rapid 3D imaging with geometric phase ferroelectric liquid crystal technology in full-field optical coherence microscopy

被引:1
|
作者
Zheng, Wei [1 ]
Kou, Shan S. [2 ]
Sheppard, Colin J. R. [3 ,4 ]
Roy, Maitreyee [5 ]
机构
[1] Natl Univ Singapore, Dept Biomed Engn, Singapore 117576, Singapore
[2] La Trobe Univ, Chem & Phys, Bundoora, Vic 3083, Australia
[3] Ist Italiano Tecnol, Nanoscopy & NIC IIT, Via Enrico Melen,83 Edificio B, I-16152 Genoa, Italy
[4] Univ Wollongong, Sch Chem & Mol Biosci, Mol Horizons, Wollongong, NSW 2522, Australia
[5] Univ New South Wales, Sch Optometry & Vis Sci, Sydney, NSW 2052, Australia
关键词
CONFOCAL INTERFERENCE MICROSCOPE; WHITE-LIGHT INTERFEROMETRY; DOMAIN REFLECTOMETRY; SCANNING MICROSCOPY; AXIAL RESOLUTION; SCATTERING; TOMOGRAPHY; HETERODYNE; REFLECTION; RECONSTRUCTION;
D O I
10.1364/BOE.488806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence microscopy (OCM) is a variant of OCT in which a high-numerical aperture lens is used. Full-field OCM (FF-OCM) is an emerging non-invasive, label-free, interferometric technique for imaging of surface structures or semi-transparent biomedical subjects with micron-scale resolutions. Different approaches to three dimensional full-field optical metrology are reviewed. The usual method for the phase-shifting technique in FF-OCM involves mechanically moving a mirror to change the optical path difference for obtaining en-face OCM images. However, with the use of a broadband source in FF-OCM, the phase shifts of different spectral components are not the same, resulting in the ambiguities in 3D image reconstruction. In this study, we demonstrate, by imaging tissues and cells, a unique geometric phase-shifter based on ferroelectric liquid crystal technology, to realize achromatic phase-shifting for rapid three-dimensional imaging in a FF-OCM system.
引用
收藏
页码:3433 / 3445
页数:13
相关论文
共 50 条
  • [21] 3D elemental sensitive imaging by full-field XFCT
    Deng, Biao
    Du, Guohao
    Zhou, Guangzhao
    Wang, Yudan
    Ren, Yuqi
    Chen, Rongchang
    Sun, Pengfei
    Xie, Honglan
    Xiao, Tiqiao
    ANALYST, 2015, 140 (10) : 3521 - 3525
  • [22] Differential phase imaging in full-field optical coherence microscopy using a short multimode fiber probe
    Sato, Manabu
    Masuta, Junpei
    Nishidate, Izumi
    APPLIED OPTICS, 2020, 59 (33) : 10512 - 10522
  • [23] Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging
    Federici, Antoine
    Gutierrez da Costa, Henrique S.
    Ogien, Jonas
    Ellerbee, Audrey K.
    Dubois, Arnaud
    APPLIED OPTICS, 2015, 54 (27) : 8212 - 8220
  • [24] Full-field optical metrology in polar and cylindrical coordinates
    Armando Albertazzi Jr, G.
    Viotti, Matias
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (04):
  • [25] Thickness and Refractive Index Measurements by Full-Field Optical Coherence Microscopy
    Na, Jihoon
    Choi, Woo June
    Choi, Hae Young
    Ryu, Seon Young
    Choi, Eun Seo
    Lee, Byeong Ha
    IEEE SENSORS JOURNAL, 2009, 9 (12) : 1996 - 1997
  • [26] Full-field optical coherence microscopy with optimized ultrahigh spatial resolution
    Federici, Antoine
    Dubois, Arnaud
    OPTICS LETTERS, 2015, 40 (22) : 5347 - 5350
  • [27] Spectroscopic ultrahigh-resolution full-field optical coherence microscopy
    Dubois, Arnaud
    Moreau, Julien
    Boccara, Claude
    OPTICS EXPRESS, 2008, 16 (21): : 17082 - 17091
  • [28] Focus defect and dispersion mismatch in full-field optical coherence microscopy
    Dubois, Arnaud
    APPLIED OPTICS, 2017, 56 (09) : D142 - D150
  • [29] Dark-field full-field optical coherence tomography
    Auksorius, Egidijus
    Boccara, A. Claude
    OPTICS LETTERS, 2015, 40 (14) : 3272 - 3275
  • [30] A method of improving imaging quality of full-field optical coherence tomography
    Zhu, Yue
    Gao, Wanrong
    Guo, Yingcheng
    Guangxue Xuebao/Acta Optica Sinica, 2015, 35 (05):