Advancing full-field metrology: rapid 3D imaging with geometric phase ferroelectric liquid crystal technology in full-field optical coherence microscopy

被引:1
作者
Zheng, Wei [1 ]
Kou, Shan S. [2 ]
Sheppard, Colin J. R. [3 ,4 ]
Roy, Maitreyee [5 ]
机构
[1] Natl Univ Singapore, Dept Biomed Engn, Singapore 117576, Singapore
[2] La Trobe Univ, Chem & Phys, Bundoora, Vic 3083, Australia
[3] Ist Italiano Tecnol, Nanoscopy & NIC IIT, Via Enrico Melen,83 Edificio B, I-16152 Genoa, Italy
[4] Univ Wollongong, Sch Chem & Mol Biosci, Mol Horizons, Wollongong, NSW 2522, Australia
[5] Univ New South Wales, Sch Optometry & Vis Sci, Sydney, NSW 2052, Australia
关键词
CONFOCAL INTERFERENCE MICROSCOPE; WHITE-LIGHT INTERFEROMETRY; DOMAIN REFLECTOMETRY; SCANNING MICROSCOPY; AXIAL RESOLUTION; SCATTERING; TOMOGRAPHY; HETERODYNE; REFLECTION; RECONSTRUCTION;
D O I
10.1364/BOE.488806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence microscopy (OCM) is a variant of OCT in which a high-numerical aperture lens is used. Full-field OCM (FF-OCM) is an emerging non-invasive, label-free, interferometric technique for imaging of surface structures or semi-transparent biomedical subjects with micron-scale resolutions. Different approaches to three dimensional full-field optical metrology are reviewed. The usual method for the phase-shifting technique in FF-OCM involves mechanically moving a mirror to change the optical path difference for obtaining en-face OCM images. However, with the use of a broadband source in FF-OCM, the phase shifts of different spectral components are not the same, resulting in the ambiguities in 3D image reconstruction. In this study, we demonstrate, by imaging tissues and cells, a unique geometric phase-shifter based on ferroelectric liquid crystal technology, to realize achromatic phase-shifting for rapid three-dimensional imaging in a FF-OCM system.
引用
收藏
页码:3433 / 3445
页数:13
相关论文
共 110 条
[21]   3-DIMENSIONAL SENSING OF ROUGH SURFACES BY COHERENCE RADAR [J].
DRESEL, T ;
HAUSLER, G ;
VENZKE, H .
APPLIED OPTICS, 1992, 31 (07) :919-925
[22]   In vivo ultrahigh-resolution optical coherence tomography [J].
Drexler, W ;
Morgner, U ;
Kärtner, FX ;
Pitris, C ;
Boppart, SA ;
Li, XD ;
Ippen, EP ;
Fujimoto, JG .
OPTICS LETTERS, 1999, 24 (17) :1221-1223
[23]   Ultrahigh-resolution ophthalmic optical coherence tomography [J].
Drexler, W ;
Morgner, U ;
Ghanta, RK ;
Kärtner, FX ;
Schuman, JS ;
Fujimoto, JG .
NATURE MEDICINE, 2001, 7 (04) :502-507
[24]   Ultrahigh-resolution full-field optical coherence tomography [J].
Dubois, A ;
Grieve, K ;
Moneron, G ;
Lecaque, R ;
Vabre, L ;
Boccara, C .
APPLIED OPTICS, 2004, 43 (14) :2874-2883
[25]   OPTICAL FREQUENCY-DOMAIN REFLECTOMETRY IN SINGLE-MODE FIBER [J].
EICKHOFF, W ;
ULRICH, R .
APPLIED PHYSICS LETTERS, 1981, 39 (09) :693-695
[26]   Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera [J].
Federici, Antoine ;
Dubois, Arnaud .
OPTICS LETTERS, 2014, 39 (06) :1374-1377
[27]  
Fercher A.F., 2002, Progress in Optics, V44, P215
[28]   IMAGING PROPERTIES DUE TO OPTICAL HETERODYNE AND ITS APPLICATION TO LASER MICROSCOPY [J].
FUJII, Y ;
TAKIMOTO, H .
OPTICS COMMUNICATIONS, 1976, 18 (01) :45-47
[29]   FEMTOSECOND OPTICAL RANGING IN BIOLOGICAL-SYSTEMS [J].
FUJIMOTO, JG ;
DESILVESTRI, S ;
IPPEN, EP ;
PULIAFITO, CA ;
MARGOLIS, R ;
OSEROFF, A .
OPTICS LETTERS, 1986, 11 (03) :150-152
[30]   Optical coherence tomography for ultrahigh resolution in vivo imaging [J].
Fujimoto, JG .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1361-1367