Advancing full-field metrology: rapid 3D imaging with geometric phase ferroelectric liquid crystal technology in full-field optical coherence microscopy

被引:1
作者
Zheng, Wei [1 ]
Kou, Shan S. [2 ]
Sheppard, Colin J. R. [3 ,4 ]
Roy, Maitreyee [5 ]
机构
[1] Natl Univ Singapore, Dept Biomed Engn, Singapore 117576, Singapore
[2] La Trobe Univ, Chem & Phys, Bundoora, Vic 3083, Australia
[3] Ist Italiano Tecnol, Nanoscopy & NIC IIT, Via Enrico Melen,83 Edificio B, I-16152 Genoa, Italy
[4] Univ Wollongong, Sch Chem & Mol Biosci, Mol Horizons, Wollongong, NSW 2522, Australia
[5] Univ New South Wales, Sch Optometry & Vis Sci, Sydney, NSW 2052, Australia
关键词
CONFOCAL INTERFERENCE MICROSCOPE; WHITE-LIGHT INTERFEROMETRY; DOMAIN REFLECTOMETRY; SCANNING MICROSCOPY; AXIAL RESOLUTION; SCATTERING; TOMOGRAPHY; HETERODYNE; REFLECTION; RECONSTRUCTION;
D O I
10.1364/BOE.488806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence microscopy (OCM) is a variant of OCT in which a high-numerical aperture lens is used. Full-field OCM (FF-OCM) is an emerging non-invasive, label-free, interferometric technique for imaging of surface structures or semi-transparent biomedical subjects with micron-scale resolutions. Different approaches to three dimensional full-field optical metrology are reviewed. The usual method for the phase-shifting technique in FF-OCM involves mechanically moving a mirror to change the optical path difference for obtaining en-face OCM images. However, with the use of a broadband source in FF-OCM, the phase shifts of different spectral components are not the same, resulting in the ambiguities in 3D image reconstruction. In this study, we demonstrate, by imaging tissues and cells, a unique geometric phase-shifter based on ferroelectric liquid crystal technology, to realize achromatic phase-shifting for rapid three-dimensional imaging in a FF-OCM system.
引用
收藏
页码:3433 / 3445
页数:13
相关论文
共 110 条
[1]   Imaging of spheres and surface profiling by confocal microscopy [J].
Aguilar, JF ;
Lera, M ;
Sheppard, CJR .
APPLIED OPTICS, 2000, 39 (25) :4621-4628
[2]   In vivo video-rate cellular-level full-field optical coherence tomography [J].
Akiba, Masahiro ;
Chan, Kin Pui .
JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (06)
[3]   TIME-RESOLVED TRANSILLUMINATION FOR MEDICAL DIAGNOSTICS [J].
ANDERSSONENGELS, S ;
BERG, R ;
SVANBERG, S ;
JARLMAN, O .
OPTICS LETTERS, 1990, 15 (21) :1179-1181
[4]   Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis [J].
Apelian, Clement ;
Harms, Fabrice ;
Thouvenin, Olivier ;
Boccara, A. Claude .
BIOMEDICAL OPTICS EXPRESS, 2016, 7 (04) :1511-1524
[5]   FIBER WAVEGUIDES - NOVEL TECHNIQUE FOR INVESTIGATING ATTENUATION CHARACTERISTICS [J].
BARNOSKI, MK ;
JENSEN, SM .
APPLIED OPTICS, 1976, 15 (09) :2112-2115
[6]   Full-field optical coherence microscopy [J].
Beaurepaire, E ;
Boccara, AC ;
Lebec, M ;
Blanchot, L ;
Saint-Jalmes, H .
OPTICS LETTERS, 1998, 23 (04) :244-246
[7]  
Beckmann P., 1987, The Scattering of Electromagnetic Waves from Rough Surfaces
[8]   INTERFEROMETRIC PROFILER FOR ROUGH SURFACES [J].
CABER, PJ .
APPLIED OPTICS, 1993, 32 (19) :3438-3441
[9]   Use of digital holographic microscopy in tomography [J].
Charriere, Florian ;
Montfort, Frederic ;
Kuehn, Jonas ;
Colomb, Tristan ;
Marian, Anca ;
Cuche, Etienne ;
Marquet, Pierre ;
Depeursinge, Christian .
BIOPHOTONICS AND NEW THERAPY FRONTIERS, 2006, 6191
[10]   Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues [J].
Chen, Nanguang ;
Rehman, Shakil ;
Sheppard, Colin J. R. .
JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2014, 7 (05)