A Holistic Approach to Power Systems Using Innovative Machine Learning and System Dynamics

被引:2
|
作者
Ibrahim, Bibi [1 ]
Rabelo, Luis [1 ]
Sarmiento, Alfonso T. [2 ]
Gutierrez-Franco, Edgar [3 ]
机构
[1] Univ Cent Florida, Ind Engn & Management Syst Dept, Orlando, FL 32816 USA
[2] Univ La Sabana, Coll Engn, Res Grp Logist Syst, Campus Puente Comun,Km 7, Chia 250001, Colombia
[3] MIT, Ctr Transportat & Logist CTL, Cambridge, MA 02142 USA
关键词
smart grids; machine learning; peak demand; optimization; system dynamics;
D O I
10.3390/en16135225
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The digital revolution requires greater reliability from electric power systems. However, predicting the growth of electricity demand is challenging as there is still much uncertainty in terms of demographics, industry changes, and irregular consumption patterns. Machine learning has emerged as a powerful tool, particularly with the latest developments in deep learning. Such tools can predict electricity demand and, thus, contribute to better decision-making by energy managers. However, it is important to recognize that there are no efficient methods for forecasting peak demand growth. In addition, features that add complexity, such as climate change and economic growth, take time to model. Therefore, these new tools can be integrated with other proven tools that can be used to model specific system structures, such as system dynamics. This research proposes a unique framework to support decision-makers in dealing with daily activities while attentively tracking monthly peak demand. This approach integrates advances in machine learning and system dynamics. This integration has the potential to contribute to more precise forecasts, which can help to develop strategies that can deal with supply and demand variations. A real-world case study was used to comprehend the needs of the environment and the effects of COVID-19 on power systems; it also helps to demonstrate the use of leading-edge tools, such as convolutional neural networks (CNNs), to predict electricity demand. Three well-known CNN variants were studied: a multichannel CNN, CNN-LSTM, and a multi-head CNN. This study found that the multichannel CNN outperformed all the models, with an R-2 of 0.92 and a MAPE value of 1.62% for predicting the month-ahead peak demand. The multichannel CNN consists of one main model that processes four input features as a separate channel, resulting in one feature map. Furthermore, a system dynamics model was introduced to model the energy sector's dynamic behavior (i.e., residential, commercial, and government demands, etc.). The calibrated model reproduced the historical data curve fairly well between 2005 and 2017, with an R-2 value of 0.94 and a MAPE value of 4.8%.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Machine learning for frequency estimation of power systems
    Karapidakis, E. S.
    APPLIED SOFT COMPUTING, 2007, 7 (01) : 105 - 114
  • [42] An Ensemble Approach for Intrusion Detection System Using Machine Learning Algorithms
    Gautam, Rohit Kumar Singh
    Doegar, Er Amit
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE CONFLUENCE 2018 ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING, 2018, : 61 - 64
  • [43] Efficient optimization approach for designing power device structure using machine learning
    Yamano, Hayate
    Kovacs, Alexander
    Fischbacher, Johann
    Danno, Katsunori
    Umetani, Yusuke
    Shoji, Tetsuya
    Schrefl, Thomas
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SC)
  • [44] Adaptive Hand Gesture Recognition System Using Machine Learning Approach
    Damdoo, Rina
    Kalyani, Kanak
    Sanghavi, Jignyasa
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (14): : 106 - 110
  • [45] A New Approach for Machine Learning-Based Fault Detection and Classification in Power Systems
    Tokel, Mil Alper
    Al Halaseh, Rana
    Alirezaei, Gholamreza
    Mathar, Rudolf
    2018 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2018,
  • [46] Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning
    Rushdi, Mostafa A.
    Rushdi, Ahmad A.
    Dief, Tarek N.
    Halawa, Amr M.
    Yoshida, Shigeo
    Schmehl, Roland
    ENERGIES, 2020, 13 (09)
  • [47] A Holistic Approach to Part Quality Prediction in Injection Molding Based on Machine Learning
    Struchtrup, Alexander Schulze
    Kvaktun, Dimitri
    Schiffers, Reinhard
    ADVANCES IN POLYMER PROCESSING 2020: PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON PLASTICS TECHNOLOGY, 2020, : 137 - 149
  • [48] System Identification and Process Modelling of Dynamic Systems Using Machine Learning
    Inapakurthi, Ravi Kiran
    Mitra, Kishalay
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 564 - 569
  • [49] Power Allocation Schemes Based on Machine Learning for Distributed Antenna Systems
    Liu, Ying
    He, Chunlong
    Li, Xingquan
    Zhang, Ce
    Tian, Chun
    IEEE ACCESS, 2019, 7 : 20577 - 20584
  • [50] Machine Learning Assisted Characteristics Prediction for Wireless Power Transfer Systems
    AL Mahmud, Shamsul Arefeen
    Jayathurathnage, Prasad
    Tretyakov, Sergei A.
    IEEE ACCESS, 2022, 10 : 40496 - 40505