SPH 3D simulation of jet break-up driven by external vibrations

被引:0
作者
Geara, S. [1 ,2 ,3 ]
Martin, S. [1 ]
Adami, S. [2 ]
Allenou, J. [3 ]
Stepnik, B. [3 ]
Bonnefoy, O. [1 ]
机构
[1] Univ Lyon, Ctr SPIN, Mines St Etienne, CNRS,UMR 5307, F-42023 St Etienne, France
[2] Tech Univ Munich, Chair Aerodynam & Fluid Mech, D-85748 Garching, Germany
[3] Framatome France, Cerca TM, ZI Berauds, BP 1114, F-26104 Romans Sur Isere, France
关键词
SMOOTHED PARTICLE HYDRODYNAMICS; SURFACE-TENSION; LIQUID; FLOWS;
D O I
10.1007/s40571-023-00624-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents a SPH study of a liquid jet break-up, the control of which is improved by applying external vibrations. The numerical method is simple: a standard weakly compressible SPH approach where the gaseous phase is neglected. The density calculation near the free surface is based on an improved geometrical method, which was previously published by the authors. The later allows one to increase the stability of the simulations and thus to widen the range of parameters (We and Oh) compared with previous studies based on SPH. The simulation results show the capability of this approach to simulate the jet break-up phenomenon accurately. This study is a step forward, toward the simulation of liquid atomization in industrial conditions with the SPH method.
引用
收藏
页码:313 / 328
页数:16
相关论文
共 50 条
[41]   Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach [J].
Tran, Hieu T. ;
Wang, Yingnan ;
Nguyen, Giang D. ;
Kodikara, J. ;
Sanchez, M. ;
Bui, Ha H. .
COMPUTERS AND GEOTECHNICS, 2019, 116
[42]   Modelling of 3D concrete printing based on SPH method with the Herschel-Bulkley-Papanastasiou rheology model [J].
Wang, Yang ;
Qiu, Liu-chao ;
Chen, Song-gui ;
Liu, Yi ;
Li, Shuo .
ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2025, 19 (01)
[43]   3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior [J].
Wang, Wei ;
Chen, Guangqi ;
Han, Zheng ;
Zhou, Suhua ;
Zhang, Hong ;
Jing, Peideng .
NATURAL HAZARDS, 2016, 81 (03) :1981-1998
[44]   3D large-scale SPH modeling of vehicle wading with GPU acceleration [J].
Zhang, Huashan ;
Li, Xiaoxiao ;
Feng, Kewei ;
Liu, Moubin .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (10)
[45]   Study of ship wave breaking patterns using 3D parallel SPH simulations [J].
Marrone, S. ;
Bouscasse, B. ;
Colagrossi, A. ;
Antuono, M. .
COMPUTERS & FLUIDS, 2012, 69 :54-66
[46]   Study of 3D self-propulsive fish swimming using the δ+-SPH model [J].
Huang, Xiao-Ting ;
Sun, Peng-Nan ;
Lyu, Hong-Guan ;
Zhong, Shi-Yun .
ACTA MECHANICA SINICA, 2023, 39 (01)
[47]   A 3D printed microliquid jet with an adjustable nozzle diameter [J].
Fernandes, D. L. A. ;
Pavliuk, M. V. ;
Sa, J. .
ANALYST, 2015, 140 (18) :6234-6238
[48]   IMPETUS: consistent SPH calculations of 3D spherical Bondi accretion on to a black hole [J].
Ramirez-Velasquez, J. M. ;
Sigalotti, L. Di G. ;
Gabbasov, R. ;
Cruz, F. ;
Klapp, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (04) :4308-4329
[49]   3D electrohydrodynamic simulation of electrowetting displays [J].
Hsieh, Wan-Lin ;
Lin, Chi-Hao ;
Lo, Kuo-Lung ;
Lee, Kuo-Chang ;
Cheng, Wei-Yuan ;
Chen, Kuo-Ching .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2014, 24 (12)
[50]   Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method [J].
Zhang, Mingyu .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7238-7259