Chaotic chimera attractors in a triangular network of identical oscillators

被引:4
|
作者
Lee, Seungjae [1 ]
Krischer, Katharina [1 ]
机构
[1] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
关键词
SYNCHRONIZATION; INCOHERENCE; COHERENCE;
D O I
10.1103/PhysRevE.107.054205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A prominent type of collective dynamics in networks of coupled oscillators is the coexistence of coherently and incoherently oscillating domains known as chimera states. Chimera states exhibit various macroscopic dynamics with different motions of the Kuramoto order parameter. Stationary, periodic and quasiperiodic chimeras are known to occur in two-population networks of identical phase oscillators. In a three-population network of identical Kuramoto-Sakaguchi phase oscillators, stationary and periodic symmetric chimeras were previously studied on a reduced manifold in which two populations behaved identically [Phys. Rev. E 82, 016216 (2010)]. In this paper, we study the full phase space dynamics of such three-population networks. We demonstrate the existence of macroscopic chaotic chimera attractors that exhibit aperiodic antiphase dynamics of the order parameters. We observe these chaotic chimera states in both finite-sized systems and the thermodynamic limit outside the Ott-Antonsen manifold. The chaotic chimera states coexist with a stable chimera solution on the Ott-Antonsen manifold that displays periodic antiphase oscillation of the two incoherent populations and with a symmetric stationary chimera solution, resulting in tristability of chimera states. Of these three coexisting chimera states, only the symmetric stationary chimera solution exists in the symmetry-reduced manifold.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators
    Gopal, R.
    Chandrasekar, V. K.
    Senthilkumar, D. V.
    Venkatesan, A.
    Lakshmanan, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 30 - 46
  • [2] CHIMERA STRUCTURES IN THE ENSEMBLES OF NONLOCALLY COUPLED CHAOTIC OSCILLATORS
    Anishchenko, V. S.
    Strelkova, G., I
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2019, 61 (8-9) : 659 - 671
  • [3] Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators
    Semenova, N. I.
    Strelkova, G. I.
    Anishchenko, V. S.
    Zakharova, A.
    CHAOS, 2017, 27 (06)
  • [4] Coupled Chaotic Colpitts Oscillators: Identical and Mismatched Cases
    A. Baziliauskas
    R. Krivickas
    A. Tamaševičius
    Nonlinear Dynamics, 2006, 44 : 151 - 158
  • [5] Coupled chaotic colpitts oscillators: Identical and mismatched cases
    Baziliauskas, A.
    Krivickas, R.
    Tamasevicius, A.
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 151 - 158
  • [6] Nonautonomous driving induces stability in network of identical oscillators
    Lucas, Maxime
    Fanelli, Duccio
    Stefanovska, Aneta
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [7] Chimera states in a population of identical oscillators under planar cross-coupling
    Hens, C. R.
    Mishra, A.
    Roy, P. K.
    Sen, A.
    Dana, S. K.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 84 (02): : 229 - 235
  • [8] Chimera states in a population of identical oscillators under planar cross-coupling
    C R HENS
    A MISHRA
    P K ROY
    A SEN
    S K DANA
    Pramana, 2015, 84 : 229 - 235
  • [9] Basin of attraction for chimera states in a network of Rossler oscillators
    dos Santos, Vagner
    Borges, Fernando S.
    Iarosz, Kelly C.
    Caldas, Ibere L.
    Szezech, J. D.
    Viana, Ricardo L.
    Baptista, Murilo S.
    Batista, Antonio M.
    CHAOS, 2020, 30 (08)
  • [10] Breathing Chimera in a System of Phase Oscillators
    Bolotov, M. I.
    Smirnov, L. A.
    Osipov, G. V.
    Pikovsky, A. S.
    JETP LETTERS, 2017, 106 (06) : 393 - 399