Autonomous Decision-Making for Aerobraking via Parallel Randomized Deep Reinforcement Learning

被引:6
作者
Falcone, Giusy [1 ,3 ]
Putnam, Zachary R. R. [2 ]
机构
[1] Univ Illinois, Champaign, IL 61801 USA
[2] Univ Illinois, Dept Aerosp Engn, Champaign, IL 61801 USA
[3] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
关键词
Space vehicles; Planetary orbits; Mars; Decision making; Computer architecture; Atmospheric modeling; Reinforcement learning; Aerobraking; deep reinforcement learning (DRL); domain randomization; ACCELEROMETER DATA; MARS; MISSION; COST;
D O I
10.1109/TAES.2022.3221697
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aerobraking is used to insert a spacecraft into a low orbit around a planet through many orbital passages into its complex atmosphere. The aerobraking atmospheric passages are challenging because of the high variability of the atmospheric environment. This paper develops a parallel domain randomized deep reinforcement learning architecture for autonomous decision-making in a stochastic environment, such as aerobraking atmospheric passages. In this context, the architecture is used for planning aerobraking maneuvers to avoid the occurrence of thermal violations during the atmospheric aerobraking passages and target a final low-altitude orbit. The parallel domain randomized deep reinforcement learning architecture is designed to account for large variability of the physical model, as well as uncertain conditions. Also, the parallel approach speeds up the training process for simulation-based applications, and domain randomization improves resultant policy generalization. This framework is applied to the 2001 Mars Odyssey aerobraking campaign; with respect to the 2001 Mars Odyssey mission flight data and a Numerical Predictor Corrector (NPC)-based state-of-the-art heuristic for autonomous aerobraking, the proposed architecture outperforms the state-of-the-art heuristic algorithm with a decrease of 97.5% in the number of thermal violations. Furthermore, it yields a reduction of 98.7% in the number of thermal violations with respect to the Mars Odyssey mission flight data and requires 13.9% fewer orbits. Results also show that the proposed architecture can also learn a generalized policy in the presence of strong uncertainties, such as aggressive atmospheric density perturbations, different atmospheric density models, and a different simulator maximum step size and error accuracy.
引用
收藏
页码:3055 / 3070
页数:16
相关论文
共 50 条
  • [31] Integration of Planning and Deep Reinforcement Learning in Speed and Lane Change Decision-Making for Highway Autonomous Driving
    Zhang, Sunan
    Zhuang, Weichao
    Li, Bingbing
    Li, Ke
    Xia, Tianyu
    Hu, Bo
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 521 - 535
  • [32] Driving Tasks Transfer Using Deep Reinforcement Learning for Decision-Making of Autonomous Vehicles in Unsignalized Intersection
    Shu, Hong
    Liu, Teng
    Mu, Xingyu
    Cao, Dongpu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (01) : 41 - 52
  • [33] Augmenting Reinforcement Learning With Transformer-Based Scene Representation Learning for Decision-Making of Autonomous Driving
    Liu, Haochen
    Huang, Zhiyu
    Mo, Xiaoyu
    Lv, Chen
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4405 - 4421
  • [34] Autonomous Maneuver Decision-Making Through Curriculum Learning and Reinforcement Learning With Sparse Rewards
    Wei, Yujie
    Zhang, Hongpeng
    Wang, Yuan
    Huang, Changqiang
    IEEE ACCESS, 2023, 11 : 73543 - 73555
  • [35] Toward Trustworthy Decision-Making for Autonomous Vehicles: A Robust Reinforcement Learning Approach with Safety Guarantees
    He, Xiangkun
    Huang, Wenhui
    Lv, Chen
    ENGINEERING, 2024, 33 : 77 - 89
  • [36] Interpretable Decision-Making for Autonomous Vehicles at Highway On-Ramps With Latent Space Reinforcement Learning
    Wang, Huanjie
    Gao, Hongbo
    Yuan, Shihua
    Zhao, Hongfei
    Wang, Kelong
    Wang, Xiulai
    Li, Keqiang
    Li, Deyi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) : 8707 - 8719
  • [37] An Integrated Framework of Lateral and Longitudinal Behavior Decision-Making for Autonomous Driving Using Reinforcement Learning
    Ni, Haoyuan
    Yu, Guizhen
    Chen, Peng
    Zhou, Bin
    Liao, Yaping
    Li, Han
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9706 - 9720
  • [38] Random Prior Network for Autonomous Driving Decision-Making Based on Reinforcement Learning
    Qiang, Yuchuan
    Wang, Xiaolan
    Wang, Yansong
    Zhang, Weiwei
    Xu, Jianxun
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2024, 150 (04)
  • [39] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [40] Autonomous decision-making of UAV cluster with communication constraints based on reinforcement learning
    Zhang, Ting-Ting
    Chen, Yan
    Dong, Ren-zhi
    Chen, Tao
    Liu, Yan
    Zhang, Kai-Ge
    Song, Ai-Guo
    Lan, Yu-Shi
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2025, 14 (01):