Autonomous Decision-Making for Aerobraking via Parallel Randomized Deep Reinforcement Learning

被引:6
作者
Falcone, Giusy [1 ,3 ]
Putnam, Zachary R. R. [2 ]
机构
[1] Univ Illinois, Champaign, IL 61801 USA
[2] Univ Illinois, Dept Aerosp Engn, Champaign, IL 61801 USA
[3] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
关键词
Space vehicles; Planetary orbits; Mars; Decision making; Computer architecture; Atmospheric modeling; Reinforcement learning; Aerobraking; deep reinforcement learning (DRL); domain randomization; ACCELEROMETER DATA; MARS; MISSION; COST;
D O I
10.1109/TAES.2022.3221697
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aerobraking is used to insert a spacecraft into a low orbit around a planet through many orbital passages into its complex atmosphere. The aerobraking atmospheric passages are challenging because of the high variability of the atmospheric environment. This paper develops a parallel domain randomized deep reinforcement learning architecture for autonomous decision-making in a stochastic environment, such as aerobraking atmospheric passages. In this context, the architecture is used for planning aerobraking maneuvers to avoid the occurrence of thermal violations during the atmospheric aerobraking passages and target a final low-altitude orbit. The parallel domain randomized deep reinforcement learning architecture is designed to account for large variability of the physical model, as well as uncertain conditions. Also, the parallel approach speeds up the training process for simulation-based applications, and domain randomization improves resultant policy generalization. This framework is applied to the 2001 Mars Odyssey aerobraking campaign; with respect to the 2001 Mars Odyssey mission flight data and a Numerical Predictor Corrector (NPC)-based state-of-the-art heuristic for autonomous aerobraking, the proposed architecture outperforms the state-of-the-art heuristic algorithm with a decrease of 97.5% in the number of thermal violations. Furthermore, it yields a reduction of 98.7% in the number of thermal violations with respect to the Mars Odyssey mission flight data and requires 13.9% fewer orbits. Results also show that the proposed architecture can also learn a generalized policy in the presence of strong uncertainties, such as aggressive atmospheric density perturbations, different atmospheric density models, and a different simulator maximum step size and error accuracy.
引用
收藏
页码:3055 / 3070
页数:16
相关论文
共 50 条
  • [1] Robust decision-making for autonomous vehicles via deep reinforcement learning and expert guidance
    Li, Feng-Jie
    Zhang, Chun-Yang
    Chen, C. L. Philip
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [2] A Decision-Making Strategy for Vehicle Autonomous Braking in Emergency via Deep Reinforcement Learning
    Fu, Yuchuan
    Li, Changle
    Yu, Fei Richard
    Luan, Tom H.
    Zhang, Yao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (06) : 5876 - 5888
  • [3] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Guofa Li
    Shenglong Li
    Shen Li
    Yechen Qin
    Dongpu Cao
    Xingda Qu
    Bo Cheng
    Automotive Innovation, 2020, 3 : 374 - 385
  • [4] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qin, Yechen
    Cao, Dongpu
    Qu, Xingda
    Cheng, Bo
    AUTOMOTIVE INNOVATION, 2020, 3 (04) : 374 - 385
  • [5] Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning
    Liao, Jiangdong
    Liu, Teng
    Tang, Xiaolin
    Mu, Xingyu
    Huang, Bing
    Cao, Dongpu
    IEEE ACCESS, 2020, 8 (08): : 177804 - 177814
  • [6] Constraints Driven Safe Reinforcement Learning for Autonomous Driving Decision-Making
    Gao, Fei
    Wang, Xiaodong
    Fan, Yuze
    Gao, Zhenhai
    Zhao, Rui
    IEEE ACCESS, 2024, 12 : 128007 - 128023
  • [7] An Autonomous Attack Decision-Making Method Based on Hierarchical Virtual Bayesian Reinforcement Learning
    Wang, Dinghan
    Zhang, Jiandong
    Yang, Qiming
    Liu, Jieling
    Shi, Guoqing
    Zhang, Yaozhong
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 7075 - 7088
  • [8] A DECISION-MAKING METHOD FOR AUTONOMOUS VEHICLES BASED ON SIMULATION AND REINFORCEMENT LEARNING
    Zheng, Rui
    Liu, Chunming
    Guo, Qi
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 362 - 369
  • [9] Decision-making with Triple Density Awareness for Autonomous Driving using Deep Reinforcement Learning
    Zhang, Shuwei
    Wu, Yutian
    Ogai, Harutoshi
    Tateno, Shigeyuki
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [10] Decision-Making for Autonomous Vehicles in Random Task Scenarios at Unsignalized Intersection Using Deep Reinforcement Learning
    Xiao, Wenxuan
    Yang, Yuyou
    Mu, Xinyu
    Xie, Yi
    Tang, Xiaolin
    Cao, Dongpu
    Liu, Teng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 7812 - 7825