Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor

被引:35
|
作者
Krutyanskiy, V. [1 ,2 ]
Canteri, M. [1 ,2 ]
Meraner, M. [1 ,2 ]
Bate, J. [1 ]
Krcmarsky, V. [1 ,2 ]
Schupp, J. [1 ,2 ]
Sangouard, N. [3 ]
Lanyon, B. P. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Experimentalphys, Tech Str 25, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Tech Str 21a, A-6020 Innsbruck, Austria
[3] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
关键词
HERALDED ENTANGLEMENT; ATOMIC ENSEMBLES; SINGLE ATOMS; NETWORK;
D O I
10.1103/PhysRevLett.130.213601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum repeater node is presented based on trapped ions that act as single-photon emitters, quantum memories, and an elementary quantum processor. The node's ability to establish entanglement across two 25-km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks, and quantum processors.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Proposal for Trapped-Ion Quantum Memristor
    Stremoukhov, Sergey
    Forsh, Pavel
    Khabarova, Ksenia
    Kolachevsky, Nikolay
    ENTROPY, 2023, 25 (08)
  • [22] Progress in Trapped-Ion Quantum Simulation
    Foss-Feig, Michael
    Pagano, Guido
    Potter, Andrew C.
    Yao, Norman Y.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2025, 16 : 145 - 172
  • [23] A small trapped-ion quantum register
    Kielpinski, D
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : R121 - R135
  • [24] Shuttling-based trapped-ion quantum information processing
    Kaushal, V.
    Lekitsch, B.
    Stahl, A.
    Hilder, J.
    Pijn, D.
    Schmiegelow, C.
    Bermudez, A.
    Mueller, M.
    Schmidt-Kaler, F.
    Poschinger, U.
    AVS QUANTUM SCIENCE, 2020, 2 (01):
  • [25] Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator
    Hempel, Cornelius
    Maier, Christine
    Romero, Jonathan
    McClean, Jarrod
    Monz, Thomas
    Shen, Heng
    Jurcevic, Petar
    Lanyon, Ben P.
    Love, Peter
    Babbush, Ryan
    Aspuru-Guzik, Alan
    Blatt, Rainer
    Roos, Christian F.
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [26] Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
    Félix Bussières
    Christoph Clausen
    Alexey Tiranov
    Boris Korzh
    Varun B. Verma
    Sae Woo Nam
    Francesco Marsili
    Alban Ferrier
    Philippe Goldner
    Harald Herrmann
    Christine Silberhorn
    Wolfgang Sohler
    Mikael Afzelius
    Nicolas Gisin
    Nature Photonics, 2014, 8 : 775 - 778
  • [27] Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum Computer
    Kreppel, Fabian
    Melzer, Christian
    Millan, Diego Olvera
    Wagner, Janis
    Hilder, Janine
    Poschinger, Ulrich
    Schmidt-Kaler, Ferdinand
    Brinkmann, Andre
    QUANTUM, 2023, 7 : 1 - 35
  • [28] Trapped-ion antennae for the transmission of quantum information
    M. Harlander
    R. Lechner
    M. Brownnutt
    R. Blatt
    W. Hänsel
    Nature, 2011, 471 : 200 - 203
  • [29] The Impact of the Sun on Trapped-Ion Quantum Computers
    Mills, Michael
    Sedlacek, Jonathan
    Peterson, Tim
    Campbell, Sara
    Johansen, Jacob
    Dreiling, Joan
    Francois, David
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 879 - 881
  • [30] Materials challenges for trapped-ion quantum computers
    Kenneth R. Brown
    John Chiaverini
    Jeremy M. Sage
    Hartmut Häffner
    Nature Reviews Materials, 2021, 6 : 892 - 905