Global atmospheric turbulence forecasting for free-space optical communications

被引:0
作者
Osborn, James [1 ]
Communal, Jean-Edouard
Jabet, Frederic [2 ]
机构
[1] Univ Durham, Dept Phys, Ctr Adv Instrumentat, Durham, England
[2] Miratlas, 139 Rue Philippe de Girard, F-84120 Pertuis, France
来源
FREE-SPACE LASER COMMUNICATIONS XXXV | 2023年 / 12413卷
基金
英国科研创新办公室;
关键词
Adaptive Optics; Turbulence Forecasting; Atmospheric Optical Turbuelnce; Free-Space Optical Communications; SCIDAR; MODEL;
D O I
10.1117/12.2649795
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The optical turbulence in the Earth's atmosphere is a major limitation to free-space optical communications. It is therefore critical that we are able to model and forecast realistic atmospheric optical turbulence conditions for site selection, instrument development, instrument performance validation and network switching. Here, we present global maps of optical turbulence strength and associated parameters (Fried parameter, isoplanatic angle, coherence time and Rytov variance), from a turbulence forecasting tool. These maps can be used by the community to understand the expected performance of free-space optical systems anywhere in the world, day and night. These maps also demonstrate that optical turbulence can be modelled and visualised in the same manner as other aspects of the Earth's weather system such as wind, rain or temperature, opening the door for more advanced turbulence forecasting functionality. We show global averages, examples of temporal sequences and more detailed analysis from some example sites.
引用
收藏
页数:15
相关论文
共 37 条
[1]  
Andrews L. C., 2001, Laser beam scintillation with applicationsM
[2]   Turbulence and wind profiling with generalized scidar at Cerro Pachon [J].
Avila, R ;
Vernin, J ;
Chun, MR ;
Sánchez, LJ .
ADAPTIVE OPTICAL SYSTEMS TECHNOLOGY, PTS 1 AND 2, 2000, 4007 :721-732
[3]   Mesoscale modelling of optical turbulence in the atmosphere: the need for ultrahigh vertical grid resolution [J].
Basu, S. ;
Osborn, J. ;
He, P. ;
DeMarco, A. W. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (02) :2302-2308
[4]  
Bennet F., 2012, INT SOC OPTICS PHOTO, V8447
[5]  
Berdja A., 2013, AO4ELT3
[6]  
Calvo R. M., 2019, FREE LASER COMMUN 31, V10910, P31
[7]   Optical turbulence in confined media: part I, the indoor turbulence sensor instrument [J].
Chabe, Julien ;
Blary, Flavien ;
Ziad, Aziz ;
Borgnino, Julien ;
Fantei-Caujolle, Yan ;
Liotard, Arnaud ;
Falzon, Frederic .
APPLIED OPTICS, 2016, 55 (25) :7068-7077
[8]   Free-space optical communications [J].
Chan, Vincent W. S. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4750-4762
[9]   Modeling Optical Turbulence and Seeing over Mauna Kea: Verification and Algorithm Refinement [J].
Cherubini, T. ;
Businger, S. ;
Lyman, R. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (12) :3033-3043
[10]  
Devaney N., 1998, New Astronomy Reviews, V42, P459, DOI 10.1016/S1387-6473(98)00053-0