Cancer Prognosis & Stratification with Sentimental Analysis using Deep and Machine Techniques

被引:0
作者
Yamini, R. [1 ]
Sharma, Shiven [2 ]
Sachdeva, Ayush [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Technol, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Kattankulathur 603203, Tamil Nadu, India
来源
JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY | 2023年 / 30卷 / 09期
关键词
Machine learning; deep learning; multiple cancer prediction; data augmentation; analysis; data visualization; decision tree; random forest; artificial neural networks; supervised; machine learning; ensemble models;
D O I
10.47750/jptcp.2023.30.09.010
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
For therapy and monitoring, it is crucial to provide prognostic information at the time of cancer characteristics, and clinical variables might offer helpful prognostic clues, risk stratification still has to be improved. All these data generate defined patterns and those patterns can be examined with the help of Machine Learning and Deep Learning. The most promising algorithm for this use case is artificial neural networks. Decision trees might be used to the best extent as they provide an adequate balance of speed and accuracy. An ideal approach would be through the effective combination of ANN and Random Forests. Ensembling models would also be able to boost the performance of the system. The metrics and scores for the project must be in-scope of the development and at the same time extendable.
引用
收藏
页码:E80 / E86
页数:7
相关论文
共 50 条
  • [41] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [42] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321
  • [43] A Comparative Study of Machine Learning and Deep Learning Techniques for Sentiment Analysis
    Jain, Kruttika
    Kaushal, Shivani
    2018 7TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO) (ICRITO), 2018, : 483 - 487
  • [44] Analysis of Optimized Machine Learning and Deep Learning Techniques for Spam Detection
    Hossain, Fahima
    Uddin, Mohammed Nasir
    Halder, Rajib Kumar
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 552 - 558
  • [45] A Review on Text Sentiment Analysis With Machine Learning and Deep Learning Techniques
    Mamani-Coaquira, Yonatan
    Villanueva, Edwin
    IEEE ACCESS, 2024, 12 : 193115 - 193130
  • [46] Review of Machine Learning and Deep Learning Techniques for Medical Image Analysis
    Saratkar, Saniya
    Raut, Rohini
    Thute, Trupti
    Chaudhari, Aarti
    Thakre, Gaitri
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1437 - 1443
  • [47] Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
    T. Rajasundrapandiyanleebanon
    K. Kumaresan
    Sakthivel Murugan
    M. S. P. Subathra
    Mahima Sivakumar
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 3059 - 3079
  • [48] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447
  • [49] An Insight into Machine Learning Techniques for Cancer Detection
    Chhillar I.
    Singh A.
    Journal of The Institution of Engineers (India): Series B, 2023, 104 (04) : 963 - 985
  • [50] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71