Study of the CO2 Adsorption Performance of a Metal-Organic Frameworks: Applications in Air Conditioning

被引:0
|
作者
Yang, Famei [1 ]
Ma, Jinyu [2 ]
Chen, Liu [1 ]
机构
[1] Xian Univ Sci & Technol, Energy Sch, Yanta Rd 58, Xian 710054, Shaanxi, Peoples R China
[2] Xinjiang Tianchi Energy Co Ltd, Safety & Environm Sect, Beijing South Rd, Changji 831100, Peoples R China
来源
CHEMISTRYSELECT | 2023年 / 8卷 / 20期
基金
中国国家自然科学基金;
关键词
adsorption; air conditioning system; breakthrough curve; CO2; metal-organic framework material; CARBON-DIOXIDE; CAPTURE; WATER; TEMPERATURE; ADSORBENTS; REMOVAL; CO2/N-2; GAS;
D O I
10.1002/slct.202203314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Air conditioning systems introduce fresh outdoor air mainly to dilute indoor CO2 and meet the high demand for interior environment quality. However, in some cases, introducing fresh outdoor air cannot be done, because of high pollution of the outdoor air or because there is no fresh air. In these cases, limiting CO2 concentration can be done only through adsorption devices. In this study, innovative metal-organic frameworks (MOFs) were employed as adsorbents to handle CO2 independently in air conditioning systems. Three different MOFs, MIL-101 (Cr), MIL-101 (Fe), and MIL-100 (Fe), were compared using a dynamic adsorption experimental device. The dynamic adsorption patterns of CO2 on the three adsorption materials and the corresponding performance index parameters were obtained. According to the experimental findings, when the temperature was raised from 298 K to 313 K, the adsorption breakthrough times for CO2 on the three adsorbent materials decreased from 590 s, 470 s, and 295 s to 305 s, 270 s, and 160 s, respectively. When the relative humidity was 30 % and 60 %, the carbon dioxide removal capacity of MIL-100(Fe) increased to 1.92 and 1.79 times that under dry conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption
    Hong, Wan Yun
    Perera, Semali P.
    Burrows, Andrew D.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 214 : 149 - 155
  • [42] Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks
    Chanut, Nicolas
    Bourrelly, Sandrine
    Kuchta, Bogdan
    Serre, Christian
    Chang, Jong-San
    Wright, Paul A.
    Llewellyn, Philip L.
    CHEMSUSCHEM, 2017, 10 (07) : 1543 - 1553
  • [43] Bifunctional metal-organic frameworks afforded by postsynthetic modification for efficient cycloaddition of CO2 and epoxides
    Gao, Wei
    Wang, Cui-Li
    Chen, Le
    Zhu, Cai-Yong
    Li, Peng
    Li, Ji-Yang
    Liu, Jie-Ping
    Zhang, Xiu-Mei
    APPLIED ORGANOMETALLIC CHEMISTRY, 2022, 36 (09)
  • [44] Photocatalytic reduction of low-concentration CO2 by metal-organic frameworks
    Dong, Man
    Gu, Jian-Xia
    Sun, Chun-Yi
    Wang, Xin-Long
    Su, Zhong-Min
    CHEMICAL COMMUNICATIONS, 2022, 58 (73) : 10114 - 10126
  • [45] Metal-Organic Frameworks Reactivate Deceased Diatoms to be Efficient CO2 Absorbents
    Liu, Dingxin
    Gu, Jiajun
    Liu, Qinglei
    Tan, Yongwen
    Li, Zhuo
    Zhang, Wang
    Su, Yishi
    Li, Wuxia
    Cui, Ajuan
    Gu, Changzhi
    Zhang, Di
    ADVANCED MATERIALS, 2014, 26 (08) : 1229 - 1234
  • [46] Molecular Design of Zirconium Tetrazolate Metal-Organic Frameworks for CO2 Capture
    Zhang, Kang
    Qao, Zhiwei
    Jiang, Jianwen
    CRYSTAL GROWTH & DESIGN, 2017, 17 (02) : 543 - 549
  • [47] Template-Mediated Synthesis of Hierarchically Porous Metal-Organic Frameworks for Efficient CO2/N2 Separation
    Qiu, Tianjie
    Gao, Song
    Fu, Yanchun
    Xu, Dong
    Kong, Dekai
    MATERIALS, 2022, 15 (15)
  • [48] High-Throughput Screening of Metal-Organic Frameworks for CO2 Separation
    Han, Sangil
    Huang, Yougui
    Watanabe, Taku
    Dai, Ying
    Walton, Krista S.
    Nair, Sankar
    Sholl, David S.
    Meredith, J. Carson
    ACS COMBINATORIAL SCIENCE, 2012, 14 (04) : 263 - 267
  • [49] Direct air capture of CO2 in designed metal-organic frameworks at lab and pilot scale
    Zhang, Xiaoyu
    Zhao, Hongshuo
    Yang, Qian
    Yao, Mingshui
    Wu, Yi-nan
    Gu, Yifan
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2023, 9
  • [50] Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53
    Abid, Hussein Rasool
    Rada, Zana Hassan
    Shang, Jin
    Wang, Shaobin
    POLYHEDRON, 2016, 120 : 103 - 111