Concyclic Intervals in the Plane

被引:0
|
作者
Solymosi, Jozsef [1 ,2 ]
White, Ethan Patrick [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
[2] Obuda Univ, Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
Planar arrangements; Point-circle incidences; Polynomial method; SEGMENTS;
D O I
10.1007/s00454-023-00515-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study arrangements of intervals in R-2 for which many pairs are concyclic. We show that any set of intervals with many concyclic pairs must have underlying algebraic and geometric structure. In the most general case, we prove that the endpoints of many intervals belong to a single bicircular quartic curve.
引用
收藏
页码:1010 / 1027
页数:18
相关论文
共 50 条
  • [1] Sets in the plane with many concyclic subsets
    Jeurissen, RH
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [2] 4 CONCYCLIC POINTS
    AMBROSE, DP
    DEMIR, H
    MARSH, DCB
    GOLDBERG, M
    BEUMER, MG
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09): : 1026 - &
  • [3] Concyclic or Collinear
    Bataille, Michel
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (02): : 181 - 182
  • [4] A FAMILY OF POLYNOMIALS WITH CONCYCLIC ZEROS
    STOLARSKY, KB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (04) : 622 - 624
  • [5] On Equilibrium Concyclic Configurations
    Giorgadze, G. K.
    Khimshiashvili, G. N.
    DOKLADY MATHEMATICS, 2018, 98 (01) : 377 - 381
  • [6] On Equilibrium Concyclic Configurations
    G. K. Giorgadze
    G. N. Khimshiashvili
    Doklady Mathematics, 2018, 98 : 377 - 381
  • [7] Combinatorics of Intervals in the Plane I: Trapezoids
    Daniel Di Benedetto
    József Solymosi
    Ethan Patrick White
    Discrete & Computational Geometry, 2023, 69 : 232 - 249
  • [8] Combinatorics of Intervals in the Plane I: Trapezoids
    Di Benedetto, Daniel
    Solymosi, Jozsef
    White, Ethan Patrick
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (01) : 232 - 249
  • [9] Four Concyclic Points Proposal
    Nguyen Duc Toan
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (07): : 680 - 680
  • [10] Four Concyclic Points Solution
    Lossers, O. P.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (07): : 680 - 682