High-velocity projectile impact resistance of reinforced concrete slabs with ultra-high performance concrete strengthening-A numerical study

被引:8
|
作者
Liu, Jian [1 ]
He, Ziqi [2 ]
Liu, Pengfei [3 ]
Wei, Jie [1 ,2 ]
Li, Jun [4 ]
Wu, Chengqing [4 ]
机构
[1] Guangzhou Univ, Earthquake Engn Res & Test Ctr, Guangzhou 510405, Peoples R China
[2] Minist Educ, Key Lab Earthquake Resistance, Earthquake Mitigat & Struct Safety, Guangzhou 510405, Peoples R China
[3] Yangling Vocat & Tech Coll, Sch Architecture Engn, Yangling 712100, Peoples R China
[4] Univ Technol Sydney, Sch Civil & Environm Engn, Ultimo, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
High -velocity projectile impact; Ultra -high performance concrete layer; Reinforced concrete slab; Finite -element modelling; Ballistic limit; FLEXURAL BEHAVIOR; PENETRATION; TARGETS; PANELS;
D O I
10.1016/j.istruc.2023.03.174
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper adopted numerical simulations to explore the high-velocity projectile impact (HVPI) performance of 180 mm thick reinforced concrete (RC) slabs with ultra-high performance concrete (UHPC) strengthening. Finite -element modelling of the RC slab and UHPC layer subjected to HVPI was firstly performed to verify the numerical model related to the local damage and projectile residual velocity. Then, the slab configuration parameters concerning the steel rebar layer number and grid size in the UHPC layer, the spacing between the RC slab and UHPC layer, and the layout positions of the UHPC layer were investigated to determine the optimal strength-ening strategy to resist projectile perforation. The numerical results demonstrated that snugly placing the UHPC layer without steel rebars upon the impact face of the RC slab was the most effective and efficient strengthening strategy. With the optimal slab configuration, the influences resulting from the unconfined compressive strength of UHPC, projectile mass and nose shape on the projectile perforation of UHPC strengthened RC slabs were explored. For each influencing factor, the relations between the projectile residual velocity and UHPC layer thickness were obtained at various projectile striking velocities. In the light of the simulated data, an empirical formula was established to estimate the ballistic limit of the 180 mm thick RC slab with UHPC strengthening..
引用
收藏
页码:422 / 436
页数:15
相关论文
共 50 条
  • [31] Experimental and numerical study of the performance of ultra high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members
    Paschalis, Spyridon A.
    Lampropoulos, Andreas P.
    Tsioulou, Ourania
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 186 : 351 - 366
  • [32] Corrosion resistance of ultra-high performance fibre-reinforced concrete
    Valcuende, M.
    Lliso-Ferrando, J. R.
    Ramon-Zamora, J. E.
    Soto, J.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 306
  • [33] Projectile impact resistance of fibre-reinforced geopolymer-based ultra-high performance concrete (G-UHPC)
    Liu, Jian
    Wu, Chengqing
    Li, Jun
    Liu, Zhongxian
    Xu, Shenchun
    Liu, Kai
    Su, Yu
    Fang, Jianguang
    Chen, Gang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 290
  • [34] Resistance of fibre concrete slabs to low velocity projectile impact
    Ong, K.C.G.
    Basheerkhan, M.
    Paramasivam, P.
    Cement and Concrete Composites, 1999, 21 (5-6): : 391 - 401
  • [35] Experimental Investigation on the Behaviour of Non-reinforced Ultra-High Performance Concrete Slabs
    Zheng, Hui
    Zhou, Dongdong
    Liao, Zhenhao
    6TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND CIVIL ENGINEERING, 2020, 455
  • [36] Resistance of fibre concrete slabs to low velocity projectile impact
    Ong, KCG
    Basheerkhan, M
    Paramasivam, P
    CEMENT & CONCRETE COMPOSITES, 1999, 21 (5-6): : 391 - 401
  • [37] Punching shear and flexural performance of ultra-high performance fibre reinforced concrete (UHPFRC) slabs
    Lampropoulos, Andreas
    Tsioulou, Ourania
    Mina, Anna
    Nicolaides, Demetris
    Petrou, Michael F.
    ENGINEERING STRUCTURES, 2023, 281
  • [38] Numerical investigation on dynamic performance of reinforced ultra-high ductile concrete-ultra-high performance concrete panel under explosion
    Liao, Qiao
    Xie, Xingxing
    Yu, Jiangtao
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3601 - 3615
  • [39] Numerical simulation of high velocity projectile perforation of steel fibre concrete slabs
    Wei, Xue-Ying
    Ma, Shu-Fang
    Zhao, Jun-Hai
    Advances in Structural Engineering:Theory and Applications Vols 1 and 2, 2006, : 346 - 349
  • [40] The impacts of contact explosions on ultra-high performance reinforced concrete slabs: experimental study and dimensional analysis
    Zhang, Wei
    Mao, Jize
    Zhou, Bukui
    Yu, Xiao
    Hu, Feng
    Wang, Limei
    Luo, Dan
    Mu, Chaomin
    SCIENTIFIC REPORTS, 2024, 14 (01):