Coherent forward scattering as a robust probe of multifractality in critical disordered media

被引:5
作者
Martinez, Maxime [1 ]
Lemarie, Gabriel [1 ,2 ,3 ]
Georgeot, Bertrand [1 ]
Miniatura, Christian [2 ,3 ,4 ,5 ,6 ]
Giraud, Olivier [7 ]
机构
[1] Univ Toulouse, Lab Phys Theor, CNRS, UPS, Toulouse, France
[2] NUS, MajuLab, CNRS, UCA,SU,NTU,Int Joint Res Unit, Singapore, Singapore
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[4] Univ Cote Azur, CNRS, INPHYNI, Nice, France
[5] Natl Univ Singapore, Dept Phys, Singapore, Singapore
[6] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[7] Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
关键词
METAL-INSULATOR-TRANSITION; ANDERSON LOCALIZATION; WEAK-LOCALIZATION; EIGENFUNCTION CORRELATIONS; INTEGRABLE SYSTEMS; LIGHT; BACKSCATTERING; FLUCTUATIONS; STATISTICS; DIFFUSION;
D O I
10.21468/SciPostPhys.14.3.057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study coherent forward scattering (CFS) in critical disordered systems, whose eigenstates are multifractals. We give general and simple arguments that make it possible to fully characterize the dynamics of the shape and height of the CFS peak. We show that the dynamics is governed by multifractal dimensions D-1 and D-2, which suggests that CFS could be used as an experimental probe for quantum multifractality. Our predictions are universal and numerically verified in three paradigmatic models of quantum multifractality: Power-law Random Banded Matrices (PRBM), the Ruijsenaars-Schneider ensembles (RS), and the three-dimensional kicked-rotor (3DKR). In the strong multifractal regime, we show analytically that these universal predictions exactly coincide with results from standard perturbation theory applied to the PRBM and RS models.
引用
收藏
页数:24
相关论文
共 94 条
[1]  
Abrahams E., 2010, 50 Years of Anderson Localization, V24
[2]  
Akkermans E, 2007, MESOSCOPIC PHYSICS OF ELECTRONS AND PHOTONS, P1, DOI 10.1017/CBO9780511618833
[3]   Multifractality of the kicked rotor at the critical point of the Anderson transition [J].
Akridas-Morel, Panayotis ;
Cherroret, Nicolas ;
Dein, Dominique .
PHYSICAL REVIEW A, 2019, 100 (04)
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]   WEAK-LOCALIZATION OF ACOUSTIC-WAVES IN STRONGLY SCATTERING MEDIA [J].
BAYER, G ;
NIEDERDRANK, T .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3884-3887
[6]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[7]   Spectral statistics of a quantum interval-exchange map [J].
Bogomolny, E ;
Schmit, C .
PHYSICAL REVIEW LETTERS, 2004, 93 (25)
[8]   Multifractal dimensions for all moments for certain critical random-matrix ensembles in the strong multifractality regime [J].
Bogomolny, E. ;
Giraud, O. .
PHYSICAL REVIEW E, 2012, 85 (04)
[9]   Integrable random matrix ensembles [J].
Bogomolny, E. ;
Giraud, O. ;
Schmit, C. .
NONLINEARITY, 2011, 24 (11) :3179-3213
[10]   Perturbation approach to multifractal dimensions for certain critical random-matrix ensembles [J].
Bogomolny, E. ;
Giraud, O. .
PHYSICAL REVIEW E, 2011, 84 (03)