Visual Object Detection for Privacy-Preserving Federated Learning

被引:7
|
作者
Zhang, Jing [1 ]
Zhou, Jiting [1 ]
Guo, Jinyang [2 ]
Sun, Xiaohan [1 ]
机构
[1] Shanghai Univ, Shanghai Film Acad, Shanghai 200072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
关键词
Federated learning; Privacy; Blockchains; Smart contracts; Visualization; Object detection; Data models; differential privacy; object detection; blockchain; smart contract;
D O I
10.1109/ACCESS.2023.3263533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object detection is a computer vision technique based on deep learning. However, due to privacy issues, it is highly challenging to build an object detection model according to the current methods on the centrally stored training dataset. Federated learning is an effective approach to solving the challenge of training data collection by using distributed training. We propose FedVisionBC, a blockchain-based federated learning system for visual object detection that addresses the challenges of single point of failure, model poisoning attacks, and membership inference attacks in traditional federated learning. In the FedVisionBC system, we set up an aggregation node and a verification node instead of a central server to solve the single point of failure problem. We establish a security mechanism that uses encryption techniques, verification nodes, and smart contracts to resist model poisoning attacks. Experimental results show that FedVisionBC can accomplish the object detection task when the percentage of malicious clients is less than 60%. We also propose a new algorithm, ADPFedAvg, to prevent membership inference attacks, which relies on user-level differential privacy technology and the federated average algorithm. Experimental results indicate that ADPFedAvg can achieve a large-scale visual object detection model with differential privacy protection, while only a negligible cost in predictive accuracy.
引用
收藏
页码:33324 / 33335
页数:12
相关论文
共 50 条
  • [31] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [32] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [33] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [34] Blockchain and Machine Learning for Fraud Detection: A Privacy-Preserving and Adaptive Incentive Based Approach
    Pranto, Tahmid Hasan
    Hasib, Kazi Tamzid Akhter Md
    Rahman, Tahsinur
    Haque, Akm Bahalul
    Islam, A. K. M. Najmul
    Rahman, Rashedur M.
    IEEE ACCESS, 2022, 10 : 87115 - 87134
  • [35] Energy-Efficient and Privacy-Preserving Blockchain Based Federated Learning for Smart Healthcare System
    Singh, Moirangthem Biken
    Singh, Himanshu
    Pratap, Ajay
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (05) : 2392 - 2403
  • [36] ELXGB: An Efficient and Privacy-Preserving XGBoost for Vertical Federated Learning
    Xu, Wei
    Zhu, Hui
    Zheng, Yandong
    Wang, Fengwei
    Zhao, Jiaqi
    Liu, Zhe
    Li, Hui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (03) : 878 - 892
  • [37] Privacy-Preserving Federated Learning via Functional Encryption, Revisited
    Chang, Yansong
    Zhang, Kai
    Gong, Junqing
    Qian, Haifeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1855 - 1869
  • [38] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [39] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [40] BSR-FL: An Efficient Byzantine-Robust Privacy-Preserving Federated Learning Framework
    Zeng, Honghong
    Li, Jie
    Lou, Jiong
    Yuan, Shijing
    Wu, Chentao
    Zhao, Wei
    Wu, Sijin
    Wang, Zhiwen
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (08) : 2096 - 2110