Visual Object Detection for Privacy-Preserving Federated Learning

被引:7
|
作者
Zhang, Jing [1 ]
Zhou, Jiting [1 ]
Guo, Jinyang [2 ]
Sun, Xiaohan [1 ]
机构
[1] Shanghai Univ, Shanghai Film Acad, Shanghai 200072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
关键词
Federated learning; Privacy; Blockchains; Smart contracts; Visualization; Object detection; Data models; differential privacy; object detection; blockchain; smart contract;
D O I
10.1109/ACCESS.2023.3263533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object detection is a computer vision technique based on deep learning. However, due to privacy issues, it is highly challenging to build an object detection model according to the current methods on the centrally stored training dataset. Federated learning is an effective approach to solving the challenge of training data collection by using distributed training. We propose FedVisionBC, a blockchain-based federated learning system for visual object detection that addresses the challenges of single point of failure, model poisoning attacks, and membership inference attacks in traditional federated learning. In the FedVisionBC system, we set up an aggregation node and a verification node instead of a central server to solve the single point of failure problem. We establish a security mechanism that uses encryption techniques, verification nodes, and smart contracts to resist model poisoning attacks. Experimental results show that FedVisionBC can accomplish the object detection task when the percentage of malicious clients is less than 60%. We also propose a new algorithm, ADPFedAvg, to prevent membership inference attacks, which relies on user-level differential privacy technology and the federated average algorithm. Experimental results indicate that ADPFedAvg can achieve a large-scale visual object detection model with differential privacy protection, while only a negligible cost in predictive accuracy.
引用
收藏
页码:33324 / 33335
页数:12
相关论文
共 50 条
  • [21] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
  • [22] Privacy-Preserving Object Detection With Poisoning Recognition for Autonomous Vehicles
    Li, Jiayin
    Guo, Wenzhong
    Xie, Lehui
    Liu, Ximeng
    Cai, Jianping
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1487 - 1500
  • [23] Privacy-Preserving Federated Learning via Disentanglement
    Zhou, Wenjie
    Li, Piji
    Han, Zhaoyang
    Lu, Xiaozhen
    Li, Juan
    Ren, Zhaochun
    Liu, Zhe
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3606 - 3615
  • [24] Fuzzy Federated Learning for Privacy-Preserving Detection of Adolescent Idiopathic Scoliosis
    Wu, Xiaotong
    Ding, Yan
    Zhou, Xiaokang
    Xu, Yanwei
    Wang, Shoujin
    Xu, Xiaolong
    Qi, Lianyong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (10) : 5493 - 5507
  • [25] Towards driver distraction detection: a privacy-preserving federated learning approach
    Zhou, Wenguang
    Jia, Zhiwei
    Feng, Chao
    Lu, Huali
    Lyu, Feng
    Li, Ling
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (02) : 896 - 910
  • [26] Privacy-Preserving Federated Learning for Intrusion Detection in IoT Environments: A Survey
    Vyas, Abhishek
    Lin, Po-Ching
    Hwang, Ren-Hung
    Tripathi, Meenakshi
    IEEE ACCESS, 2024, 12 : 127018 - 127050
  • [27] Towards driver distraction detection: a privacy-preserving federated learning approach
    Wenguang Zhou
    Zhiwei Jia
    Chao Feng
    Huali Lu
    Feng Lyu
    Ling Li
    Peer-to-Peer Networking and Applications, 2024, 17 : 896 - 910
  • [28] Explainable federated learning for privacy-preserving bangla sign language detection
    Diba, Bidita Sarkar
    Plabon, Jayonto Dutta
    Rahman, M. D. Mahmudur
    Mistry, Durjoy
    Saha, Aloke Kumar
    Mridha, M. F.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [29] VPPFL: Verifiable Privacy-Preserving Federated Learning in Cloud Environment
    Wang, Huiyong
    Yang, Tengfei
    Ding, Yong
    Tang, Shijie
    Wang, Yujue
    IEEE ACCESS, 2024, 12 : 151998 - 152008
  • [30] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488