Visual Object Detection for Privacy-Preserving Federated Learning

被引:8
作者
Zhang, Jing [1 ]
Zhou, Jiting [1 ]
Guo, Jinyang [2 ]
Sun, Xiaohan [1 ]
机构
[1] Shanghai Univ, Shanghai Film Acad, Shanghai 200072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
关键词
Federated learning; Privacy; Blockchains; Smart contracts; Visualization; Object detection; Data models; differential privacy; object detection; blockchain; smart contract;
D O I
10.1109/ACCESS.2023.3263533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object detection is a computer vision technique based on deep learning. However, due to privacy issues, it is highly challenging to build an object detection model according to the current methods on the centrally stored training dataset. Federated learning is an effective approach to solving the challenge of training data collection by using distributed training. We propose FedVisionBC, a blockchain-based federated learning system for visual object detection that addresses the challenges of single point of failure, model poisoning attacks, and membership inference attacks in traditional federated learning. In the FedVisionBC system, we set up an aggregation node and a verification node instead of a central server to solve the single point of failure problem. We establish a security mechanism that uses encryption techniques, verification nodes, and smart contracts to resist model poisoning attacks. Experimental results show that FedVisionBC can accomplish the object detection task when the percentage of malicious clients is less than 60%. We also propose a new algorithm, ADPFedAvg, to prevent membership inference attacks, which relies on user-level differential privacy technology and the federated average algorithm. Experimental results indicate that ADPFedAvg can achieve a large-scale visual object detection model with differential privacy protection, while only a negligible cost in predictive accuracy.
引用
收藏
页码:33324 / 33335
页数:12
相关论文
共 45 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]  
Andrew G, 2021, ADV NEUR IN, V34
[3]  
[Anonymous], The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
[4]   FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive [J].
Bao, Xianglin ;
Su, Cheng ;
Xiong, Yan ;
Huang, Wenchao ;
Hu, Yifei .
5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2019), 2019, :151-159
[5]  
Benet Juan, 2014, arXiv
[6]  
Blanchard P, 2017, ADV NEUR IN, V30
[7]   The Design of Reputation System for Blockchain-based Federated Learning [J].
Chen, Xinyan ;
Wang, Taotao ;
Zhang, Shengli .
2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BLOCKCHAIN TECHNOLOGY (AIBT 2021), 2021, :114-120
[8]   Differential privacy: A survey of results [J].
Dwork, Cynthia .
THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 :1-19
[9]  
Fang MH, 2020, PROCEEDINGS OF THE 29TH USENIX SECURITY SYMPOSIUM, P1623
[10]   BAFL: A Blockchain-Based Asynchronous Federated Learning Framework [J].
Feng, Lei ;
Zhao, Yiqi ;
Guo, Shaoyong ;
Qiu, Xuesong ;
Li, Wenjing ;
Yu, Peng .
IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) :1092-1103