Visual Object Detection for Privacy-Preserving Federated Learning

被引:7
|
作者
Zhang, Jing [1 ]
Zhou, Jiting [1 ]
Guo, Jinyang [2 ]
Sun, Xiaohan [1 ]
机构
[1] Shanghai Univ, Shanghai Film Acad, Shanghai 200072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
关键词
Federated learning; Privacy; Blockchains; Smart contracts; Visualization; Object detection; Data models; differential privacy; object detection; blockchain; smart contract;
D O I
10.1109/ACCESS.2023.3263533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object detection is a computer vision technique based on deep learning. However, due to privacy issues, it is highly challenging to build an object detection model according to the current methods on the centrally stored training dataset. Federated learning is an effective approach to solving the challenge of training data collection by using distributed training. We propose FedVisionBC, a blockchain-based federated learning system for visual object detection that addresses the challenges of single point of failure, model poisoning attacks, and membership inference attacks in traditional federated learning. In the FedVisionBC system, we set up an aggregation node and a verification node instead of a central server to solve the single point of failure problem. We establish a security mechanism that uses encryption techniques, verification nodes, and smart contracts to resist model poisoning attacks. Experimental results show that FedVisionBC can accomplish the object detection task when the percentage of malicious clients is less than 60%. We also propose a new algorithm, ADPFedAvg, to prevent membership inference attacks, which relies on user-level differential privacy technology and the federated average algorithm. Experimental results indicate that ADPFedAvg can achieve a large-scale visual object detection model with differential privacy protection, while only a negligible cost in predictive accuracy.
引用
收藏
页码:33324 / 33335
页数:12
相关论文
共 50 条
  • [1] Privacy-Preserving Multilayer Community Detection via Federated Learning
    Ma, Shi-Yao
    Xu, Xiao-Ke
    Xiao, Jing
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [2] Medical Image Object Detection Algorithm for Privacy-Preserving Federated Learning
    Wang S.
    Lu S.
    Cao B.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (10): : 1553 - 1562
  • [3] Privacy-Preserving Federated Edge Learning: Modeling and Optimization
    Liu, Tianyu
    Di, Boya
    Song, Lingyang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1489 - 1493
  • [4] Staged Noise Perturbation for Privacy-Preserving Federated Learning
    Li, Zhe
    Chen, Honglong
    Gao, Yudong
    Ni, Zhichen
    Xue, Huansheng
    Shao, Huajie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 936 - 947
  • [5] Federated Visualization: A Privacy-Preserving Strategy for Aggregated Visual Query
    Chen, Wei
    Wei, Yating
    Wang, Zhiyong
    Zhou, Shuyue
    Lin, Bingru
    Zhou, Zhiguang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (06) : 2901 - 2913
  • [6] Privacy-preserving Federated Learning System for Fatigue Detection
    Mohammadi, Mohammadreza
    Allocca, Roberto
    Eklund, David
    Shrestha, Rakesh
    Sinaei, Sima
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 624 - 629
  • [7] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [8] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [9] Intrusion Detection Based on Privacy-Preserving Federated Learning for the Industrial IoT
    Ruzafa-Alcazar, Pedro
    Fernandez-Saura, Pablo
    Marmol-Campos, Enrique
    Gonzalez-Vidal, Aurora
    Hernandez-Ramos, Jose L.
    Bernal-Bernabe, Jorge
    Skarmeta, Antonio F.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1145 - 1154
  • [10] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366