CDGSH iron sulfur domain 2 over-expression alleviates neuronal ferroptosis and brain injury by inhibiting lipid peroxidation via AKT/mTOR pathway following intracerebral hemorrhage in mice

被引:18
作者
Li, Ruihao [1 ]
Zhang, Xingyu [1 ]
Gu, Lingui [1 ]
Yuan, Ye [1 ]
Luo, Xu [1 ]
Shen, Weiwei [2 ]
Xie, Zongyi [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 2, Dept Neurosurg, 76 Linjiang Rd, Chongqing 400010, Peoples R China
[2] Chongqing Med & Pharmaceut Coll, Affiliated Hosp 1, Dept Endocrinol, 301 Dashi Rd, Chongqing 400060, Peoples R China
基金
芬兰科学院;
关键词
brain injury; CISD2; ferroptosis; intracerebral hemorrhage; lipid peroxidation; SUBARACHNOID HEMORRHAGE; SIGNALING PATHWAY; ISCHEMIC-STROKE; CELL-DEATH; AUTOPHAGY; METABOLISM; APOPTOSIS; PROTEIN; CANCER;
D O I
10.1111/jnc.15785
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ferroptosis has been implicated in the pathogenesis of secondary brain injury following intracerebral hemorrhage (ICH), and regulating this process is considered a potential therapy for alleviating further brain injury. A previous study showed that CDGSH iron sulfur domain 2 (CISD2) can inhibit ferroptosis in cancer. Thus, we investigated the effects of CISD2 on ferroptosis and the mechanisms underlying its neuroprotective role in mice after ICH. CISD2 expression markedly increased after ICH. CISD2 over-expression significantly decreased the number of Fluoro-Jade C-positive neurons and alleviated brain edema and neurobehavioral deficits at 24 h after ICH. In addition, CISD2 over-expression up-regulated the expression of p-AKT, p-mTOR, ferritin heavy chain 1, glutathione peroxidase 4, ferroportin, glutathione, and glutathione peroxidase activity, which are markers of ferroptosis. Additionally, CISD2 over-expression down-regulated the levels of malonaldehyde, iron content, acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and cyclooxygenase-2 at 24 h after ICH. It also alleviated mitochondrial shrinkage and decreased the density of the mitochondrial membrane. Furthermore, CISD2 over-expression increased the number of GPX4-positive neurons following ICH induction. Conversely, knockdown of CISD2 aggravated neurobehavioral deficits, brain edema, and neuronal ferroptosis. Mechanistically, MK2206, an AKT inhibitor, suppressed p-AKT and p-mTOR and reversed the effects of CISD2 over-expression on markers of neuronal ferroptosis and acute neurological outcome. Taken together, CISD2 over-expression alleviated neuronal ferroptosis and improved neurological performance, which may be mediated through the AKT/mTOR pathway after ICH. Thus, CISD2 may be a potential target to mitigate brain injury via the anti-ferroptosis effect after ICH.
引用
收藏
页码:426 / 444
页数:19
相关论文
共 55 条
[51]   Intranasal administration of recombinant Netrin-1 attenuates neuronal apoptosis by activating DCC/APPL-1/AKT signaling pathway after subarachnoid hemorrhage in rats [J].
Xie, Zongyi ;
Huang, Lei ;
Enkhjargal, Budbazar ;
Reis, Cesar ;
Wan, Weifeng ;
Tang, Jiping ;
Cheng, Yuan ;
Zhang, John H. .
NEUROPHARMACOLOGY, 2017, 119 :123-133
[52]   Ferrootosis: Death by Lipid Peroxidation [J].
Yang, Wan Seok ;
Stockwell, Brent R. .
TRENDS IN CELL BIOLOGY, 2016, 26 (03) :165-176
[53]   Cisd2 is essential to delaying cardiac aging and to maintaining heart functions [J].
Yeh, Chi-Hsiao ;
Shen, Zhao-Qing ;
Hsiung, Shao-Yu ;
Wu, Pei-Chun ;
Teng, Yuan-Chi ;
Chou, Yi-Ju ;
Fang, Su-Wen ;
Chen, Chian-Feng ;
Yan, Yu-Ting ;
Kao, Lung-Sen ;
Kao, Cheng-Heng ;
Tsai, Ting-Fen .
PLOS BIOLOGY, 2019, 17 (10)
[54]   Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells [J].
Zhang, Zili ;
Yao, Zhen ;
Wang, Ling ;
Ding, Hai ;
Shao, Jiangjuan ;
Chen, Anping ;
Zhang, Feng ;
Zheng, Shizhong .
AUTOPHAGY, 2018, 14 (12) :2083-2103
[55]   Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis [J].
Zille, Marietta ;
Karuppagounder, Saravanan S. ;
Chen, Yingxin ;
Gough, Peter J. ;
Bertin, John ;
Finger, Joshua ;
Milner, Teresa A. ;
Jonas, Elizabeth A. ;
Ratan, Rajiv R. .
STROKE, 2017, 48 (04) :1033-1043