Signal denoising through topographic modularity of neural circuits

被引:0
|
作者
Zajzon, Barna [1 ,2 ,3 ,4 ]
Dahmen, David [1 ,2 ,3 ]
Morrison, Abigail [1 ,2 ,3 ,5 ]
Duarte, Renato [1 ,2 ,3 ,6 ]
Sharpee, Tatyana O. [2 ,3 ]
机构
[1] Julich Res Ctr, Inst Neurosci & Med INM 6, Julich, Germany
[2] Julich Res Ctr, Inst Adv Simulat IAS 6, Julich, Germany
[3] Julich Res Ctr, JARA BRAIN Inst I, Julich, Germany
[4] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, Aachen, Germany
[5] Rhein Westfal TH Aachen, Dept Comp Sci 3 Software Engn, Aachen, Germany
[6] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
来源
ELIFE | 2023年 / 12卷
关键词
network dynamics; neural circuits; theoretical neuroscience; topographic modularity; signal denoising; None; NEURONAL NETWORKS; FEEDFORWARD INHIBITION; SYNCHRONOUS SPIKING; RECEPTIVE-FIELD; PROPAGATION; ATTENTION; DYNAMICS; NOISE; INFORMATION; VARIABILITY;
D O I
10.7554/eLife.77009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally relevant operating regimes, and provide an in-depth theoretical analysis unraveling the dynamical principles underlying the mechanism.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Assessing the Impact of Deep Neural Network-Based Image Denoising on Binary Signal Detection Tasks
    Li, Kaiyan
    Zhou, Weimin
    Li, Hua
    Anastasio, Mark A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (09) : 2295 - 2305
  • [42] Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits
    Qi, Yang
    Gong, Pulin
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [43] Optimal FPGA implementation of CL multiwavelets architecture for signal denoising application
    Kumar, B. Mohan
    Lavanya, R. Vidhya
    Sumesh, E. P.
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2013, 100 (03) : 288 - 301
  • [44] Neighboring Coefficients Preservation for Signal Denoising
    Yang, Ying
    Wei, Yusen
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2012, 31 (02) : 827 - 832
  • [45] Multilayer Decomposition Denoising Empowered CNN for Radar Signal Modulation Recognition
    Jiang, Mengting
    Zhou, Fang
    Shen, Lai
    Wang, Xiaofeng
    Quan, Daying
    Jin, Ning
    IEEE ACCESS, 2024, 12 : 31652 - 31661
  • [46] Formation and computational Implications of assemblies in neural circuits
    Miehl, Christoph
    Onasch, Sebastian
    Festa, Dylan
    Gjorgjieva, Julijana
    JOURNAL OF PHYSIOLOGY-LONDON, 2023, 601 (15): : 3071 - 3090
  • [47] Improved Artificial Rabbit Optimization and Its Application in Multichannel Signal Denoising
    Li, Yuxing
    Tian, Ge
    Yi, Yingmin
    Yuan, Yiwei
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 32950 - 32965
  • [48] Stable chaos in fluctuation driven neural circuits
    Angulo-Garcia, David
    Torcini, Alessandro
    CHAOS SOLITONS & FRACTALS, 2014, 69 : 233 - 245
  • [49] Generative Adversarial Neural Networks for Denoising Coherent Multidimensional Spectra
    Al-Mualem, Ziareena A.
    Baiz, Carlos R.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (23) : 3816 - 3825
  • [50] Decorrelation by Recurrent Inhibition in Heterogeneous Neural Circuits
    Bernacchia, Alberto
    Wang, Xiao-Jing
    NEURAL COMPUTATION, 2013, 25 (07) : 1732 - 1767