Signal denoising through topographic modularity of neural circuits

被引:0
|
作者
Zajzon, Barna [1 ,2 ,3 ,4 ]
Dahmen, David [1 ,2 ,3 ]
Morrison, Abigail [1 ,2 ,3 ,5 ]
Duarte, Renato [1 ,2 ,3 ,6 ]
Sharpee, Tatyana O. [2 ,3 ]
机构
[1] Julich Res Ctr, Inst Neurosci & Med INM 6, Julich, Germany
[2] Julich Res Ctr, Inst Adv Simulat IAS 6, Julich, Germany
[3] Julich Res Ctr, JARA BRAIN Inst I, Julich, Germany
[4] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, Aachen, Germany
[5] Rhein Westfal TH Aachen, Dept Comp Sci 3 Software Engn, Aachen, Germany
[6] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
来源
ELIFE | 2023年 / 12卷
关键词
network dynamics; neural circuits; theoretical neuroscience; topographic modularity; signal denoising; None; NEURONAL NETWORKS; FEEDFORWARD INHIBITION; SYNCHRONOUS SPIKING; RECEPTIVE-FIELD; PROPAGATION; ATTENTION; DYNAMICS; NOISE; INFORMATION; VARIABILITY;
D O I
10.7554/eLife.77009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally relevant operating regimes, and provide an in-depth theoretical analysis unraveling the dynamical principles underlying the mechanism.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] A neural network model based on the cortical modularity
    Cho, Myoung Won
    Choi, M. Y.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (08) : 772 - 784
  • [32] Understanding Categorical Learning in Neural Circuits Through the Primary Olfactory Cortex
    Stensola, Tor
    Stensola, Hanne
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2022, 16
  • [33] An iterative wavelet threshold for signal denoising
    Bayer, Fabio M.
    Kozakevicius, Alice J.
    Cintra, Renato J.
    SIGNAL PROCESSING, 2019, 162 : 10 - 20
  • [34] Optimal modularity and memory capacity of neural reservoirs
    Rodriguez, Nathaniel
    Izquierdo, Eduardo
    Ahn, Yong-Yeol
    NETWORK NEUROSCIENCE, 2019, 3 (02) : 551 - 566
  • [35] Graph polynomial filter for signal denoising
    Waheed, Waseem
    Tay, David B. H.
    IET SIGNAL PROCESSING, 2018, 12 (03) : 301 - 309
  • [36] Neighboring Coefficients Preservation for Signal Denoising
    Ying Yang
    Yusen Wei
    Circuits, Systems, and Signal Processing, 2012, 31 : 827 - 832
  • [37] SIGNAL AND IMAGE DENOISING WITHOUT REGULARIZATION
    Bruni, V.
    Vitulano, D.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 539 - 542
  • [38] Using AutoEncoders for Radio Signal Denoising
    Almazrouei, Ebtesam
    Gianini, Gabriele
    Mio, Corrado
    Almoosa, Nawaf
    Damiani, Ernesto
    Q2SWINET'19: PROCEEDINGS OF THE 15TH ACM INTERNATIONAL SYMPOSIUM ON QOS AND SECURITY FOR WIRELESS AND MOBILE NETWORKS, 2019, : 11 - 17
  • [39] Optimal Wavelet Selection for Signal Denoising
    Sahoo, Gyana Ranjan
    Freed, Jack H.
    Srivastava, Madhur
    IEEE ACCESS, 2024, 12 : 45369 - 45380
  • [40] Inhibitory-autapse-enhanced signal transmission in neural networks
    Yao, Chenggui
    He, Zhiwei
    Nakano, Tadashi
    Qian, Yu
    Shuai, Jianwei
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1425 - 1437