Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode

被引:79
作者
Hu, Yifan [1 ,2 ]
Li, Zichuang [2 ]
Wang, Zongpeng [1 ]
Wang, Xunlu [2 ]
Chen, Wei [3 ]
Wang, Jiacheng [1 ,2 ]
Zhong, Wenwu [1 ]
Ma, Ruguang [2 ,4 ]
机构
[1] Taizhou Univ, Sch Mat Sci & Engn, Taizhou 318000, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
[3] Illinois Inst Technol Chicago, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA
[4] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, 99 Xuefu Rd, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
alloying; dendrite hotspots; electrospinning; Li metal anodes; reaction; superlithiophilic membranes; SOLID-ELECTROLYTE INTERPHASE; LAYER; DEPOSITION; INTERFACE; CAPACITY; BATTERY;
D O I
10.1002/advs.202206995
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li metal anode is considered as one of the most desirable candidates for next-generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl2 composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl2 and PVDF to form the Zn-F bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li+ flux. The PZEM-covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm(-2). When paired with LiFePO4 (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] A Robust Li-Intercalated Interlayer withStrong Electron Withdrawing Ability EnablesDurable and High-Rate Li Metal Anode
    Chen, Jiahe
    Li, Zhendong
    Sun, Nannan
    Xu, Jinting
    Li, Qian
    Yao, Xiayin
    Ming, Jun
    Peng, Zhe
    [J]. ACS ENERGY LETTERS, 2022, 7 (05) : 1594 - 1603
  • [2] Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes
    Chen, Kuan-Hung
    Sanchez, Adrian J.
    Kazyak, Eric
    Davis, Andrew L.
    Dasgupta, Neil P.
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (04)
  • [3] High-Energy Li Metal Battery with Lithiated Host
    Chen, Long
    Fan, Xiulin
    Ji, Xiao
    Chen, Ji
    Hou, Singyuk
    Wang, Chunsheng
    [J]. JOULE, 2019, 3 (03) : 732 - 744
  • [4] Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
    Cheng, Xin-Bing
    Hou, Ting-Zheng
    Zhang, Rui
    Peng, Hong-Jie
    Zhao, Chen-Zi
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. ADVANCED MATERIALS, 2016, 28 (15) : 2888 - 2895
  • [5] Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination
    Cheng, Yifeng
    Yang, Xuming
    Li, Menghao
    Li, Xiangyan
    Lu, Xinzhen
    Wu, Duojie
    Han, Bing
    Zhang, Qing
    Zhu, Yuanmin
    Gu, Meng
    [J]. NANO LETTERS, 2022, 22 (11) : 4347 - 4353
  • [6] Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes
    Cui, Jiang
    Yao, Shanshan
    Ihsan-Ul-Haq, Muhammad
    Wu, Junxiong
    Kim, Jang-Kyo
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (01)
  • [7] Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
    Ding, Fei
    Xu, Wu
    Graff, Gordon L.
    Zhang, Jian
    Sushko, Maria L.
    Chen, Xilin
    Shao, Yuyan
    Engelhard, Mark H.
    Nie, Zimin
    Xiao, Jie
    Liu, Xingjiang
    Sushko, Peter V.
    Liu, Jun
    Zhang, Ji-Guang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) : 4450 - 4456
  • [8] Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries
    Duan, Hui
    Zhang, Jing
    Chen, Xiang
    Zhang, Xu-Dong
    Li, Jin-Yi
    Huang, Lin-Bo
    Zhang, Xing
    Shi, Ji-Lei
    Yin, Ya-Xia
    Zhang, Qiang
    Guo, Yu-Guo
    Jiang, Lang
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) : 18051 - 18057
  • [9] Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface
    Gao, Yue
    Rojas, Tomas
    Wang, Ke
    Liu, Shuai
    Wang, Daiwei
    Chen, Tianhang
    Wang, Haiying
    Ngo, Anh T.
    Wang, Donghai
    [J]. NATURE ENERGY, 2020, 5 (07) : 534 - 542
  • [10] Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
    Gao, Yue
    Yan, Zhifei
    Gray, Jennifer L.
    He, Xin
    Wang, Daiwei
    Chen, Tianhang
    Huang, Qingquan
    Li, Yuguang C.
    Wang, Haiying
    Kim, Seong H.
    Mallouk, Thomas E.
    Wang, Donghai
    [J]. NATURE MATERIALS, 2019, 18 (04) : 384 - +