A characterization of delay independent stability for linear off-diagonal delay difference equations

被引:1
作者
Do, Duc Thuan [1 ]
Doan, Thai Son [2 ]
Le, Viet Cuong [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 01 Dai Co Viet Str, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi, Vietnam
[3] Hanoi Univ Civil Engn, Dept Informat Technol, 55 Giai Phong Str, Hanoi, Vietnam
关键词
Delay difference equations; Stability; Lotka-Volterra equations; GLOBAL ATTRACTIVITY; NEURAL-NETWORKS; SYSTEMS; SUFFICIENT;
D O I
10.1016/j.sysconle.2022.105428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider linear off-diagonal difference equations of the form xi(k + 1) = n-ary sumation n j=1 aijxj(k -& UTau;ij), for i=1, ...,n, (1) where A = (aij)111). As an application, we establish a criterion for delay independent stability for an equilibrium of a discrete-time Lotka-Volterra equation.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Delay independent robust stability of uncertain linear systems - Comment [J].
Hmamed, A ;
Tissir, E .
SYSTEMS & CONTROL LETTERS, 1996, 29 (02) :119-120
[42]   A new Razumikhin theorem for delay difference equations [J].
Zhang, SN ;
Chen, MP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :405-412
[43]   Moment boundedness of linear stochastic delay differential equations with distributed delay [J].
Wang, Zhen ;
Li, Xiong ;
Lei, Jinzhi .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :586-612
[44]   Periodicity in a Class of Systems of Delay Difference Equations [J].
Wei, Zhijian .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[45]   Stability of stochastic differential-algebraic equations with delay [J].
Thuan, Do Duc ;
Son, Nguyen Hong .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (09) :1835-1850
[46]   Oscillation result for half-linear delay difference equations of second-order [J].
Jayakumar, Chinnasamy ;
Santra, Shyam Sundar ;
Baleanu, Dumitru ;
Edwan, Reem ;
Govindan, Vediyappan ;
Murugesan, Arumugam ;
Altanji, Mohamed .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (04) :3879-3891
[47]   Convergence and Stability Analysis of Exponential General Linear Methods for Delay Differential Equations [J].
Zhao, Jingjun ;
Li, Yu ;
Xu, Yang .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (02) :354-382
[48]   Asymptotic Behavior and Stability in Linear Impulsive Delay Differential Equations with Periodic Coefficients [J].
Yenicerioglu, Ali Fuat ;
Yazici, Vildan ;
Yazici, Cuneyt .
MATHEMATICS, 2020, 8 (10) :1-17
[49]   Stability analysis of linear fractional neutral delay differential equations [J].
Zhao, Jingjun ;
Wang, Xingchi ;
Xu, Yang .
CALCOLO, 2024, 61 (03)
[50]   Stability Threshold for Scalar Linear Periodic Delay Differential Equations [J].
Nah, Kyeongah ;
Roest, Gergely .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04) :849-857