Quantitative measurement of local conductivity of SnO2 nanobelt field effect transistor utilizing microwave atomic force microscopy

被引:1
作者
Zhao, Minji [1 ]
Kimura, Yasuhiro [1 ]
Toku, Yuhki [1 ]
Ju, Yang [1 ]
机构
[1] Nagoya Univ, Dept Mech Sci & Engn, Nagoya 4648603, Japan
基金
日本学术振兴会;
关键词
microwave; atomic force microscopy; SnO2; nanobelt; field effect transistor; conductivity; M-AFM; GAS SENSORS; DEVICES;
D O I
10.35848/1882-0786/acaaf3
中图分类号
O59 [应用物理学];
学科分类号
摘要
A non-contact quantitative method for measuring the electrical conductivity of a SnO2 nanobelt field-effect transistor (FET) with nanometer-scale spatial resolution is reported. The topography and microwave images of the nanobelt FET were measured by microwave atomic force microscopy (M-AFM) under a constant source voltage and different back-gate voltages. The output characteristics of the nanobelt FET were measured using a two-probe measurement method. The local conductivity of the SnO2 nanobelt FET measured by M-AFM concurred with that obtained by the two-probe measurement. Therefore, M-AFM is a promising method for measuring the local conductivity of nanomaterial FETs.
引用
收藏
页数:6
相关论文
共 48 条
  • [1] Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers
    Alam, Md Hasibul
    Xu, Zifan
    Chowdhury, Sayema
    Jiang, Zhanzhi
    Taneja, Deepyanti
    Banerjee, Sanjay K.
    Lai, Keji
    Braga, Maria Helena
    Akinwande, Deji
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure
    Andrei, P.
    Fields, L. L.
    Zheng, J. P.
    Cheng, Y.
    Xiong, P.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 128 (01) : 226 - 234
  • [3] Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy
    Bae, S-S
    Prokopuk, N.
    Quitoriano, N. J.
    Adams, S. M.
    Ragan, R.
    [J]. NANOTECHNOLOGY, 2012, 23 (40)
  • [4] Tuning the Electrical Properties of Si Nanowire Field-Effect Transistors by Molecular Engineering
    Bashouti, Muhammad Y.
    Tung, Raymond T.
    Haick, Hossam
    [J]. SMALL, 2009, 5 (23) : 2761 - 2769
  • [5] Near-field control and imaging of free charge carrier variations in GaN nanowires
    Berweger, Samuel
    Blanchard, Paul T.
    Brubaker, Matt D.
    Coakley, Kevin J.
    Sanford, Norman A.
    Wallis, Thomas M.
    Bertness, Kris A.
    Kabos, Pavel
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (07)
  • [6] Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases
    Cheng, Yi
    Yang, Rusen
    Zheng, Jian-Ping
    Wang, Zhong Lin
    Xiong, Peng
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2012, 137 (01) : 372 - 380
  • [7] Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin
    Cheng, Yi
    Chen, Kan-Sheng
    Meyer, Nancy L.
    Yuan, Jing
    Hirst, Linda S.
    Chase, P. Bryant
    Xiong, Peng
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (11) : 4538 - 4544
  • [8] Mechanism and Optimization of pH Sensing Using SnO2 Nanobelt Field Effect Transistors
    Cheng, Yi
    Xiong, P.
    Yun, C. Steven
    Strouse, G. F.
    Zheng, J. P.
    Yang, R. S.
    Wang, Z. L.
    [J]. NANO LETTERS, 2008, 8 (12) : 4179 - 4184
  • [9] One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues
    Choi, Kyoung Jin
    Jang, Ho Won
    [J]. SENSORS, 2010, 10 (04) : 4083 - 4099
  • [10] Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts
    Comini, E
    Faglia, G
    Sberveglieri, G
    Pan, ZW
    Wang, ZL
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (10) : 1869 - 1871