A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms

被引:2
作者
Wang, Lu Shun [1 ]
Yang, Tao [1 ]
Yang, Xiao Long [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
elliptic system; refined Sobolev inequality; hardy-Sobolev critical exponent; global compactness; existence; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1515/anona-2022-0276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: {-Delta u + V-1(x)u = eta(1)/eta(1) + eta(2) vertical bar u vertical bar(eta 1-2) u vertical bar v vertical bar(eta 2)/vertical bar x'vertical bar + alpha/alpha + beta Q(x)vertical bar u vertical bar(alpha-2) u vertical bar v vertical bar(beta), {-Delta v + V-2(x)v = eta(2)/eta(1) + eta(2) vertical bar v vertical bar(eta 2-2) v vertical bar u vertical bar(eta 1)/vertical bar x'vertical bar + beta/alpha + beta Q(x)vertical bar v vertical bar(beta-2) v vertical bar u vertical bar(alpha), (0.1) where n >= 3, 2 <= m < n, x := (x', x '') is an element of R(m )x Rn-m, eta(1), eta(2) > 1, and eta(1) + eta(2) = 2(n - 1)/n - 2, alpha, beta > 1 and alpha + beta 2n/n - 2, and V-1(x), V-2(x), Q(x) is an element of C(R-n). Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the "Vanishing" lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.
引用
收藏
页数:31
相关论文
共 33 条
[1]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[4]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[5]  
Badiale M, 2004, REV MAT IBEROAM, V20, P33
[6]   POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :283-300
[7]   A refined bound on the dimension of RN for an elliptic system involving critical terms with infinitely many solutions [J].
Benmouloud, Samira ;
Khiddi, Mustapha ;
Sbai, Simohammed .
ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (01) :85-96
[8]  
Bertin G, 2000, DYNAMICS GALAXIES
[9]  
Bhakta M., 2020, Differ. Integral Equ., V33, P323
[10]   Fractional Hardy-Sobolev equations with nonhomogeneous terms [J].
Bhakta, Mousomi ;
Chakraborty, Souptik ;
Pucci, Patrizia .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :1086-1116