Addressing modern and practical challenges in machine learning: a survey of online federated and transfer learning

被引:10
|
作者
Dai, Shuang [1 ]
Meng, Fanlin [1 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester, Essex, England
关键词
Online transfer learning; Online federated learning; Online learning; Federated transfer learning; Privacy-preserving; FRAMEWORK; PERCEPTRON; PREDICTION; PRIVACY; KERNEL;
D O I
10.1007/s10489-022-04065-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online federated learning (OFL) and online transfer learning (OTL) are two collaborative paradigms for overcoming modern machine learning challenges such as data silos, streaming data, and data security. This survey explores OFL and OTL throughout their major evolutionary routes to enhance understanding of online federated and transfer learning. Practical aspects of popular datasets and cutting-edge applications for online federated and transfer learning are also highlighted in this work. Furthermore, this survey provides insight into potential future research areas and aims to serve as a resource for professionals developing online federated and transfer learning frameworks.
引用
收藏
页码:11045 / 11072
页数:28
相关论文
共 50 条
  • [31] Extreme learning machine based transfer learning algorithms: A survey
    Salaken, Syed Moshfeq
    Khosravi, Abbas
    Thanh Nguyen
    Nahavandi, Saeid
    NEUROCOMPUTING, 2017, 267 : 516 - 524
  • [32] Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey
    Dun Li
    Dezhi Han
    Tien-Hsiung Weng
    Zibin Zheng
    Hongzhi Li
    Han Liu
    Arcangelo Castiglione
    Kuan-Ching Li
    Soft Computing, 2022, 26 : 4423 - 4440
  • [33] Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey
    Li, Dun
    Han, Dezhi
    Weng, Tien-Hsiung
    Zheng, Zibin
    Li, Hongzhi
    Liu, Han
    Castiglione, Arcangelo
    Li, Kuan-Ching
    SOFT COMPUTING, 2022, 26 (09) : 4423 - 4440
  • [34] Online Federated Multitask Learning
    Li, Rui
    Ma, Fenglong
    Jiang, Wenjun
    Gao, Jing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 215 - 220
  • [35] Implementing Machine Learning in Health Care - Addressing Ethical Challenges
    Char, Danton S.
    Shah, Nigam H.
    Magnus, David
    NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (11): : 981 - 983
  • [36] Personalized Online Federated Learning for IoT/CPS: Challenges and Future Directions
    Gogineni V.C.
    Werner S.
    Gauthier F.
    Huang Y.-F.
    Kuh A.
    IEEE Internet of Things Magazine, 2022, 5 (04): : 78 - 84
  • [37] Practical Vertical Federated Learning With Unsupervised Representation Learning
    Wu, Zhaomin
    Li, Qinbin
    He, Bingsheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 864 - 878
  • [38] Underspecification Presents Challenges for Credibility in Modern Machine Learning
    D'Amour, Alexander
    Heller, Katherine
    Moldovan, Dan
    Adlam, Ben
    Alipanahi, Babak
    Beutel, Alex
    Chen, Christina
    Deaton, Jonathan
    Eisenstein, Jacob
    Hoffman, Matthew D.
    Hormozdiari, Farhad
    Houlsby, Neil
    Hou, Shaobo
    Jerfel, Ghassen
    Karthikesalingam, Alan
    Lucic, Mario
    Ma, Yian
    McLean, Cory
    Mincu, Diana
    Mitani, Akinori
    Montanari, Andrea
    Nado, Zachary
    Natarajan, Vivek
    Nielson, Christopher
    Osborne, Thomas F.
    Raman, Rajiv
    Ramasamy, Kim
    Sayres, Rory
    Schrouff, Jessica
    Seneviratne, Martin
    Sequeira, Shannon
    Suresh, Harini
    Veitch, Victor
    Vladymyrov, Max
    Wang, Xuezhi
    Webster, Kellie
    Yadlowsky, Steve
    Yun, Taedong
    Zhai, Xiaohua
    Sculley, D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [39] Machine Learning in Modern SCADA Systems: Opportunities and Challenges
    Senk, Ivana
    Tegeltija, Srdan
    Tarjan, Laslo
    2024 23RD INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA, INFOTEH, 2024,
  • [40] Federated Quantum Machine Learning
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    ENTROPY, 2021, 23 (04)