Lifespan estimates for local solutions to the semilinear wave equation in Einstein-de Sitter spacetime

被引:2
作者
Palmieri, Alessandro [1 ,2 ,3 ]
机构
[1] Univ Pisa, Dept Math, Pisa, Italy
[2] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[3] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
基金
日本学术振兴会;
关键词
Semilinear wave equation; Einstein-de Sitter spacetime; power nonlinearity; critical case; lifespan estimates; Primary; Secondary; TIME BLOW-UP; FUNDAMENTAL-SOLUTIONS; GLOBAL EXISTENCE; SCALAR FIELD; NONEXISTENCE; EXPONENT; MODELS; MASS;
D O I
10.1080/00036811.2022.2088529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some blow-up results for the semilinear wave equation in generalized Einstein-de Sitter spacetime by using an iteration argument, and we derive upper bound estimates for the lifespan. In particular, we will focus on the critical cases which require the employment of a slicing procedure in the iterative mechanism. Furthermore, in order to deal with the main critical case, we will introduce a non-autonomous and parameter-dependent Cauchy problem for a linear ODE of second-order, whose explicit solution will be determined by applying the theory of special functions.
引用
收藏
页码:3577 / 3608
页数:32
相关论文
共 48 条
  • [1] Critical curve for p-q systems of nonlinear wave equations in three space dimensions
    Agemi, R
    Kurokawa, Y
    Takamura, H
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 167 (01) : 87 - 133
  • [2] Catania D, 2006, DIFFER INTEGRAL EQU, V19, P799
  • [3] Chen W., SPRINGER INDAM SERIE, V43, P2021, DOI [10.1007/978-3-030-61346-4_4, DOI 10.1007/978-3-030-61346-4_4]
  • [4] NONEXISTENCE OF GLOBAL SOLUTIONS FOR THE SEMILINEAR MOORE - GIBSON - THOMPSON EQUATION IN THE CONSERVATIVE CASE
    Chen, Wenhui
    Palmieri, Alessandro
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (09) : 5513 - 5540
  • [5] A shift in the Strauss exponent for semilinear wave equations with a not effective damping
    D'Abbicco, Marcello
    Lucente, Sandra
    Reissig, Michael
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5040 - 5073
  • [6] DAbbicco M., 2015, DISCRETE CONT DYN-A, P312, DOI DOI 10.3934/PROC.2015.0312
  • [7] Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation
    do Nascimento, Wanderley Nunes
    Palmieri, Alessandro
    Reissig, Michael
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (11-12) : 1779 - 1805
  • [8] Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity
    Ebert, M. R.
    Reissig, M.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 14 - 54
  • [9] Galstian A., 2018, THEORY NUMERICS APPL, V236, P577
  • [10] Galstian A., 2003, APPL ANAL, V82, P197, DOI DOI 10.1080/0003681031000063720