Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries

被引:51
作者
Ge, Hao [1 ,6 ]
Shen, Zhiwen [1 ]
Wang, Yanhong [2 ]
Sun, Zhijia [3 ]
Cao, Xiaoman [3 ]
Wang, Chaoyue [4 ]
Fan, Xinyue [4 ]
Bai, Jinsong [1 ]
Li, Rundong [1 ]
Yang, Tianhua [1 ,6 ]
Wu, Gang [5 ]
机构
[1] Shenyang Aerosp Univ, Sch Energy & Environm, Shenyang, Peoples R China
[2] Shenyang Aircraft Airworthiness Certificat Ctr CA, Shenyang, Peoples R China
[3] Bohai Univ, Coll Chem & Mat Engn, Jinzhou, Peoples R China
[4] Liaoning Gen Aviat Acad, Shenyang, Peoples R China
[5] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14068 USA
[6] Shenyang Aerosp Univ, Sch Energy & Environm, Shenyang 110136, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Co-free cathodes; electrochemical performance; lithium-ion batteries; modification strategies; Ni-rich layered cathodes; LAYERED OXIDE CATHODES; POSITIVE ELECTRODE MATERIALS; COBALT-FREE; LI-ION; SINGLE-CRYSTAL; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; CYCLING STABILITY; LINIO2; CATHODE; HIGH-POWER;
D O I
10.1002/sus2.176
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Great attention has been given to high-performance and inexpensive lithium-ion batteries (LIBs) in response to the ever-increasing demand for the explosive growth of electric vehicles (EVs). High-performance and low-cost Co-free Ni-rich layered cathodes are considered one of the most favorable candidates for next-generation LIBs because the current supply chain of EVs relies heavily on scarce and expensive Co. Herein, we review the recent research progress on Co-free Ni-rich layered cathodes, emphasizing on analyzing the necessity of replacing Co and the popular improvment methods. The current advancements in the design strategies of Co-free Ni-rich layered cathodes are summarized in detail. Despite considerable improvements achieved so far, the main technical challenges contributing to the deterioration of Co-free Ni-rich cathodes such as detrimental phase transitions, crack formation, and severe interfacial side reactions, are difficult to resolve by a single technique. The cooperation of multiple modification strategies is expected to accelerate the industrialization of Co-free Ni-rich layered cathodes, and the corresponding synergistic mechanisms urgently need to be studied. More effects will be aroused to explore high-performance Co-free Ni-rich layered cathodes to promote the sustainable development of LIBs.
引用
收藏
页码:48 / 71
页数:24
相关论文
共 146 条
[11]   Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Stoll, ME ;
Henriksen, G ;
Vissers, DR ;
Amine, K .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :278-285
[12]   An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating [J].
Chen, Yanping ;
Zhang, Yun ;
Chen, Baojun ;
Wang, Zongyi ;
Lu, Chao .
JOURNAL OF POWER SOURCES, 2014, 256 :20-27
[13]   Writing and erasing MYC ubiquitination and SUMOylation [J].
Chen, Yingxiao ;
Sun, Xiao-Xin ;
Sears, Rosalie C. ;
Dai, Mu-Shui .
GENES & DISEASES, 2019, 6 (04) :359-371
[14]   Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries [J].
Cheng, Fangyuan ;
Zhang, Xiaoyu ;
Qiu, Yuegang ;
Zhang, Jinxu ;
Liu, Yi ;
Wei, Peng ;
Ou, Mingyang ;
Sun, Shixiong ;
Xu, Yue ;
Li, Qing ;
Fang, Chun ;
Han, Jiantao ;
Huang, Yunhui .
NANO ENERGY, 2021, 88
[15]   Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating [J].
Cheng, Xiaopeng ;
Zheng, Jianming ;
Lu, Junxia ;
Li, Yonghe ;
Yan, Pengfei ;
Zhang, Yuefei .
NANO ENERGY, 2019, 62 :30-37
[16]   A perspective on sustainable energy materials for lithium batteries [J].
Cheng, Xin-Bing ;
Liu, He ;
Yuan, Hong ;
Peng, Hong-Jie ;
Tang, Cheng ;
Huang, Jia-Qi ;
Zhang, Qiang .
SUSMAT, 2021, 1 (01) :38-50
[17]   Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating [J].
Cho, Woosuk ;
Kim, Sang-Min ;
Song, Jun Ho ;
Yim, Taeeun ;
Woo, Sang-Gil ;
Lee, Ko-Woon ;
Kim, Jeom-Soo ;
Kim, Young-Jun .
JOURNAL OF POWER SOURCES, 2015, 282 :45-50
[18]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[19]   Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of LixNiO2 with the Electrolyte of Li-Ion Batteries [J].
Cormier, Marc M. E. ;
Zhang, Ning ;
Liu, Aaron ;
Li, Hongyang ;
Inglis, Julie ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) :A2826-A2833
[20]   A path toward cobalt-free lithium-ion cathodes [J].
Croy, Jason R. ;
Long, Brandon R. ;
Balasubramanian, Mahalingam .
JOURNAL OF POWER SOURCES, 2019, 440