Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries

被引:51
作者
Ge, Hao [1 ,6 ]
Shen, Zhiwen [1 ]
Wang, Yanhong [2 ]
Sun, Zhijia [3 ]
Cao, Xiaoman [3 ]
Wang, Chaoyue [4 ]
Fan, Xinyue [4 ]
Bai, Jinsong [1 ]
Li, Rundong [1 ]
Yang, Tianhua [1 ,6 ]
Wu, Gang [5 ]
机构
[1] Shenyang Aerosp Univ, Sch Energy & Environm, Shenyang, Peoples R China
[2] Shenyang Aircraft Airworthiness Certificat Ctr CA, Shenyang, Peoples R China
[3] Bohai Univ, Coll Chem & Mat Engn, Jinzhou, Peoples R China
[4] Liaoning Gen Aviat Acad, Shenyang, Peoples R China
[5] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14068 USA
[6] Shenyang Aerosp Univ, Sch Energy & Environm, Shenyang 110136, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Co-free cathodes; electrochemical performance; lithium-ion batteries; modification strategies; Ni-rich layered cathodes; LAYERED OXIDE CATHODES; POSITIVE ELECTRODE MATERIALS; COBALT-FREE; LI-ION; SINGLE-CRYSTAL; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; CYCLING STABILITY; LINIO2; CATHODE; HIGH-POWER;
D O I
10.1002/sus2.176
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Great attention has been given to high-performance and inexpensive lithium-ion batteries (LIBs) in response to the ever-increasing demand for the explosive growth of electric vehicles (EVs). High-performance and low-cost Co-free Ni-rich layered cathodes are considered one of the most favorable candidates for next-generation LIBs because the current supply chain of EVs relies heavily on scarce and expensive Co. Herein, we review the recent research progress on Co-free Ni-rich layered cathodes, emphasizing on analyzing the necessity of replacing Co and the popular improvment methods. The current advancements in the design strategies of Co-free Ni-rich layered cathodes are summarized in detail. Despite considerable improvements achieved so far, the main technical challenges contributing to the deterioration of Co-free Ni-rich cathodes such as detrimental phase transitions, crack formation, and severe interfacial side reactions, are difficult to resolve by a single technique. The cooperation of multiple modification strategies is expected to accelerate the industrialization of Co-free Ni-rich layered cathodes, and the corresponding synergistic mechanisms urgently need to be studied. More effects will be aroused to explore high-performance Co-free Ni-rich layered cathodes to promote the sustainable development of LIBs.
引用
收藏
页码:48 / 71
页数:24
相关论文
共 146 条
[1]   Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials [J].
Ahaliabadeh, Zahra ;
Kong, Xiangze ;
Fedorovskaya, Ekaterina ;
Kallio, Tanja .
JOURNAL OF POWER SOURCES, 2022, 540
[2]   Cobalt-Free High-Capacity Ni-Rich Layered Li[Ni0.9Mn0.1]O2 Cathode [J].
Aishova, Assylzat ;
Park, Geon-Tae ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2020, 10 (04)
[3]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[4]   Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport [J].
Bai, Yaocai ;
Muralidharan, Nitin ;
Sun, Yang-Kook ;
Passerini, Stefano ;
Whittingham, M. Stanley ;
Belharouak, Ilias .
MATERIALS TODAY, 2020, 41 :304-315
[5]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[6]   An in situ structural study on the synthesis and decomposition of LiNiO2 [J].
Bianchini, Matteo ;
Fauth, Francois ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1808-1820
[7]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[8]   Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodium-Ion Batteries [J].
Cao, Xin ;
Li, Haifeng ;
Qiao, Yu ;
Li, Xiang ;
Jia, Min ;
Cabana, Jordi ;
Zhou, Haoshen .
ADVANCED ENERGY MATERIALS, 2020, 10 (15)
[9]  
Cazzola P., Global EV Outlook 2019Scaling up the Transition to Electric Mobility. London
[10]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696