Nanocrystalline Ni25Co20Cu10Fe25Mn20 High-Entropy Alloys Prepared by Mechanical Alloying

被引:2
作者
Mamnooni, Samaneh [1 ]
Borhani, Ehsan [1 ]
Shahedi Asl, Mehdi [2 ]
机构
[1] Semnan Univ, Dept New Sci & Technol, Nanomat Grp, Semnan 3513119111, Iran
[2] Univ Kyrenia, Fac Engn, Dept Mech Engn, Mersin 10, Kyrenia, Turkiye
关键词
DEFORMATION-BEHAVIOR; SOLID-SOLUTION; STRENGTHENING MECHANISMS; PLASTIC-DEFORMATION; PHASE EVOLUTION; MICROSTRUCTURE; CO; CRMNFECONI; BINARY; SI;
D O I
10.1007/s11837-024-06474-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An Ni25Co20Cu10Fe25Mn20 high-entropy alloy (HEA) was produced using mechanical alloying. Similar to equiatomic NiCoCuFeMn alloy, a face-centered cubic single-phase nanocrystalline HEA was obtained after 28-h milling. The lattice parameter of this new HEA (0.360 nm) was slightly smaller than that of equiatomic alloy (0.361 nm). The crystallite size of the final product was similar to 9 nm, significantly finer than the values reported for the equiatomic HEAs. According to the analysis of the HEA powder particles' deformation behavior, the system operated in a ductile-brittle mode. The thermal behavior of prepared alloy, characterized by differential thermal analysis, was similar from that of equiatomic NiCoCuFeMn alloy. Similar to the equiatomic NiCoCuFeMn, the sluggish diffusion effect was not true for the Ni25Co20Cu10Fe25Mn20 HEA. Studying the magnetic behavior of Ni25Co20Cu10Fe25Mn20 HEA, using vibrating sample magnetometry, confirmed a soft magnetic behavior for this material like an equiatomic alloy.
引用
收藏
页码:5109 / 5120
页数:12
相关论文
共 123 条
[1]   Understanding the deformation behavior of CoCuFeMnNi high entropy alloy by investigating mechanical properties of binary ternary and quaternary alloy subsets [J].
Agarwal, Rani ;
Sonkusare, Reshma ;
Jha, Saumya R. ;
Gurao, N. P. ;
Biswas, Krishanu ;
Nayan, Niraj .
MATERIALS & DESIGN, 2018, 157 :539-550
[2]  
Akhlaghi M., 2022, SYNTH SINTER, V2, P138, DOI DOI 10.53063/SYNSINT.2022.2383
[3]   SMALL PARTICLE MELTING OF PURE METALS [J].
ALLEN, GL ;
BAYLES, RA ;
GILE, WW ;
JESSER, WA .
THIN SOLID FILMS, 1986, 144 (02) :297-308
[4]   Size and Shape Dependence on Melting Temperature of Gallium Nitride Nanoparticles [J].
Antoniammal, Paneerselvam ;
Arivuoli, Dakshanamoorthy .
JOURNAL OF NANOMATERIALS, 2012, 2012
[5]   Micro-mechanisms of microstructural damage due to low cycle fatigue in CoCuFeMnNi high entropy alloy [J].
Bahadur, Fateh ;
Biswas, Krishanu ;
Gurao, N. P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 130
[6]   Multicomponent high-entropy Cantor alloys [J].
Cantor, B. .
PROGRESS IN MATERIALS SCIENCE, 2021, 120
[7]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[8]   Novel cermet material of WC/multi-element alloy [J].
Chen, Chi-San ;
Yang, Chih-Chao ;
Chai, Heng-Yi ;
Yeh, Jien-Wei ;
Chau, Joseph Lik Hang .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 43 :200-204
[9]   Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J].
Chen, TK ;
Shun, TT ;
Yeh, JW ;
Wong, MS .
SURFACE & COATINGS TECHNOLOGY, 2004, 188 :193-200
[10]   Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy [J].
Chen, Weiping ;
Fu, Zhiqiang ;
Fang, Sicong ;
Xiao, Huaqiang ;
Zhu, Dezhi .
MATERIALS & DESIGN, 2013, 51 :854-860