Identification of a major QTL and candidate genes analysis for branch angle in rapeseed (Brassica napus L.) using QTL-seq and RNA-seq

被引:3
|
作者
Lei, Shaolin [1 ]
Chen, Li [2 ]
Liang, Fenghao [1 ]
Zhang, Yuling [1 ]
Zhang, Chao [1 ]
Xiao, Huagui [1 ]
Tang, Rong [1 ]
Yang, Bin [1 ]
Wang, Lulu [1 ]
Jiang, Huanhuan [1 ]
机构
[1] Guizhou Acad Agr Sci, Guizhou Oil Crops Res Inst, Guiyang, Guizhou, Peoples R China
[2] Guizhou Rapeseed Res Inst, Guizhou Acad Agr Sci, Guiyang, Guizhou, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
rapeseed; branch angle; BSA-seq; QTL mapping; RNA-Seq; TILLER ANGLE; SHOOT GRAVITROPISM; PLANT ARCHITECTURE; RICE; ARABIDOPSIS; EXPRESSION; ETHYLENE; PROGRESS; GRAVITY; PROTEIN;
D O I
10.3389/fpls.2024.1340892
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction: Branching angle is an essential trait in determining the planting density of rapeseed (Brassica napus L.) and hence the yield per unit area. However, the mechanism of branching angle formation in rapeseed is not well understood. Methods: In this study, two rapeseed germplasm with extreme branching angles were used to construct an F-2 segregating population; then bulked segregant analysis sequencing (BSA-seq) and quantitative trait loci (QTL) mapping were utilized to localize branching anglerelated loci and combined with transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qPCR) for candidate gene mining Results and discussion: A branching angle-associated quantitative trait loci (QTL) was mapped on chromosome C3 (C3: 1.54-2.65 Mb) by combining BSA-seq as well as traditional QTL mapping. A total of 54 genes had SNP/Indel variants within the QTL interval were identified. Further, RNA-seq of the two parents revealed that 12 of the 54 genes were differentially expressed between the two parents. Finally, we further validated the differentially expressed genes using qPCR and found that six of them presented consistent differential expression in all small branching angle samples and large branching angles, and thus were considered as candidate genes related to branching angles in rapeseed. Our results introduce new candidate genes for the regulation of branching angle formation in rapeseed, and provide an important reference for the subsequent exploration of its formation mechanism.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes
    Hai-Ming Xu
    Xiang-Dong Kong
    Fei Chen
    Ji-Xiang Huang
    Xiang-Yang Lou
    Jian-Yi Zhao
    BMC Genomics, 16
  • [32] Salt tolerance candidate genes identified by QTL mapping, RNA-seq, and functional analysis in tilapia
    Yang, Zituo
    Wang, Le
    Sun, Fei
    Wong, Joey
    Lee, May
    Yeo, Shadame
    Wen, Yanfei
    Yue, Gen Hua
    AQUACULTURE, 2025, 596
  • [33] Refining the major-effect QTL and candidate genes associated with grain number per panicle by QTL-seq in rice (Oryza sativa L.)
    Ariharasutharsan, Gunasekaran
    Karthikeyan, Adhimoolam
    Geetha, Seshadri
    Saraswathi, Ramasamy
    Raveendran, Muthurajan
    Krishna-Surendar, Karuppasamy
    Ananda-Lekshmi, Latha-Devi
    Kailappan, Amudha
    Suresh, Ramalingam
    Devasena, Natarajan
    EUPHYTICA, 2024, 220 (10)
  • [34] Identification and validation of genomic regions for pod shatter resistance in Brassica rapa using QTL-seq and traditional QTL mapping
    Raman, Rosy
    Qiu, Yu
    Coombes, N.
    Raman, Harsh
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [35] Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato
    Junqin Wen
    Fangling Jiang
    Yiqun Weng
    Mintao Sun
    Xiaopu Shi
    Yanzhao Zhou
    Lu Yu
    Zhen Wu
    BMC Plant Biology, 19
  • [36] Identification of consistent QTL and candidate genes associated with seed traits in common bean by combining GWAS and RNA-Seq
    Jurado, Maria
    Garcia-Fernandez, Carmen
    Campa, Ana
    Ferreira, Juan Jose
    THEORETICAL AND APPLIED GENETICS, 2024, 137 (06)
  • [37] Identification of candidate genes for leaf size by QTL mapping and transcriptome sequencing in Brassica napus L
    Cheng, Fengjie
    Wang, Yuwen
    Peng, Aoyi
    Li, Shuyu
    Chen, Jun
    Zheng, Xiaoxiao
    Xiong, Jie
    Ding, Ge
    Zhang, Bingchao
    Zhai, Wen
    Song, Laiqiang
    Wei, Wenliang
    Chen, Lunlin
    BMC GENOMICS, 2025, 26 (01):
  • [38] Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis
    Wang, Huadong
    Liu, Jiajia
    Huang, Juan
    Xiao, Qing
    Hayward, Alice
    Li, Fuyan
    Gong, Yingying
    Liu, Qian
    Ma, Miao
    Fu, Donghui
    Xiao, Meili
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [39] Identification of a major-effect QTL associated with pre-harvest sprouting in cucumber (Cucumis sativus L.) using the QTL-seq method
    Cao, Mingming
    Li, Shuju
    Deng, Qiang
    Wang, Huizhe
    Yang, Ruihuan
    BMC GENOMICS, 2021, 22 (01)
  • [40] Mapping and Identifying a Candidate Gene (Bnmfs) for Female-Male Sterility through Whole-Genome Resequencing and RNA-Seq in Rapeseed (Brassica napus L.)
    Teng, Changcai
    Du, Dezhi
    Xiao, Lu
    Yu, Qinglan
    Shang, Guoxia
    Zhao, Zhigang
    FRONTIERS IN PLANT SCIENCE, 2017, 8