Identification of a major QTL and candidate genes analysis for branch angle in rapeseed (Brassica napus L.) using QTL-seq and RNA-seq

被引:3
|
作者
Lei, Shaolin [1 ]
Chen, Li [2 ]
Liang, Fenghao [1 ]
Zhang, Yuling [1 ]
Zhang, Chao [1 ]
Xiao, Huagui [1 ]
Tang, Rong [1 ]
Yang, Bin [1 ]
Wang, Lulu [1 ]
Jiang, Huanhuan [1 ]
机构
[1] Guizhou Acad Agr Sci, Guizhou Oil Crops Res Inst, Guiyang, Guizhou, Peoples R China
[2] Guizhou Rapeseed Res Inst, Guizhou Acad Agr Sci, Guiyang, Guizhou, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
rapeseed; branch angle; BSA-seq; QTL mapping; RNA-Seq; TILLER ANGLE; SHOOT GRAVITROPISM; PLANT ARCHITECTURE; RICE; ARABIDOPSIS; EXPRESSION; ETHYLENE; PROGRESS; GRAVITY; PROTEIN;
D O I
10.3389/fpls.2024.1340892
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction: Branching angle is an essential trait in determining the planting density of rapeseed (Brassica napus L.) and hence the yield per unit area. However, the mechanism of branching angle formation in rapeseed is not well understood. Methods: In this study, two rapeseed germplasm with extreme branching angles were used to construct an F-2 segregating population; then bulked segregant analysis sequencing (BSA-seq) and quantitative trait loci (QTL) mapping were utilized to localize branching anglerelated loci and combined with transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qPCR) for candidate gene mining Results and discussion: A branching angle-associated quantitative trait loci (QTL) was mapped on chromosome C3 (C3: 1.54-2.65 Mb) by combining BSA-seq as well as traditional QTL mapping. A total of 54 genes had SNP/Indel variants within the QTL interval were identified. Further, RNA-seq of the two parents revealed that 12 of the 54 genes were differentially expressed between the two parents. Finally, we further validated the differentially expressed genes using qPCR and found that six of them presented consistent differential expression in all small branching angle samples and large branching angles, and thus were considered as candidate genes related to branching angles in rapeseed. Our results introduce new candidate genes for the regulation of branching angle formation in rapeseed, and provide an important reference for the subsequent exploration of its formation mechanism.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq
    Wang, Hui
    Cheng, Hongtao
    Wang, Wenxiang
    Liu, Jia
    Hao, Mengyu
    Mei, Desheng
    Zhou, Rijin
    Fu, Li
    Hu, Qiong
    SCIENTIFIC REPORTS, 2016, 6
  • [2] A major QTL identification and candidate gene analysis of watermelon fruit cracking using QTL-seq and RNA-seq
    Zhan, Yuanfeng
    Hu, Wei
    He, Huang
    Dang, Xuanmin
    Chen, Songbi
    Bie, Zhilong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq
    Park, Minjeong
    Lee, Joung-Ho
    Han, Koeun
    Jang, Siyoung
    Han, Jiwoong
    Lim, Jung-Hyun
    Jung, Ji-Won
    Kang, Byoung-Cheorl
    THEORETICAL AND APPLIED GENETICS, 2019, 132 (02) : 515 - 529
  • [4] Identification of candidate genes associated with peanut pod length by combined analysis of QTL-seq and RNA-seq
    Lv, Zhenghao
    Lan, Guohu
    Bai, Baiyi
    Yu, Penghao
    Wang, Chuantang
    Zhang, He
    Zhong, Chao
    Zhao, Xinhua
    Yu, Haiqiu
    GENOMICS, 2024, 116 (03)
  • [5] Identification of Rapeseed (Brassica napus L.) Plant Height-Associated QTL Using BSA-seq and RNA-seq
    Xia, Jichun
    Zhan, Lanlan
    Zhang, Jiaying
    Song, Wenhui
    Xu, Xinfu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (18)
  • [6] Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq
    Lei Lei
    Hongliang Zheng
    Yanli Bi
    Luomiao Yang
    Hualong Liu
    Jingguo Wang
    Jian Sun
    Hongwei Zhao
    Xianwei Li
    Jiaming Li
    Yongcai Lai
    Detang Zou
    Rice, 2020, 13
  • [7] Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.)
    Nan, Yunyou
    Xie, Yuyu
    He, Huiying
    Wu, Han
    Gao, Lixing
    Atif, Ayub
    Zhang, Yanfeng
    Tian, Hui
    Hui, Jing
    Gao, Yajun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254
  • [8] Identification of a candidate QTG for seed number per silique by integrating QTL mapping and RNA-seq in Brassica napus L.
    Xin, Shuangshuang
    Dong, Hongli
    Cui, Yixin
    Liu, Yilin
    Tian, Guifu
    Deng, Nanxi
    Wan, Huafang
    Liu, Zhi
    Li, Xiaorong
    Qian, Wei
    CROP JOURNAL, 2023, 11 (01): : 189 - 197
  • [9] Identification of Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli Using QTL-Seq
    Liu, Chunqing
    Yao, Xueqin
    Li, Guangqing
    Huang, Lei
    Wu, Xinyan
    Xie, Zhujie
    HORTICULTURAE, 2021, 7 (08)
  • [10] Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativaL.) Using QTL-Seq and RNA-Seq
    Lei, Lei
    Zheng, Hongliang
    Bi, Yanli
    Yang, Luomiao
    Liu, Hualong
    Wang, Jingguo
    Sun, Jian
    Zhao, Hongwei
    Li, Xianwei
    Li, Jiaming
    Lai, Yongcai
    Zou, Detang
    RICE, 2020, 13 (01)