Catalog of precessing black-hole-binary numerical-relativity simulations

被引:10
|
作者
Hamilton, Eleanor [1 ,2 ]
Fauchon-Jones, Edward [1 ,3 ]
Hannam, Mark [1 ]
Hoy, Charlie [1 ,4 ]
Kalaghatgi, Chinmay [1 ,5 ,6 ,7 ]
London, Lionel [1 ,7 ,8 ,9 ,10 ]
Thompson, Jonathan E. [1 ,11 ]
Yeeles, Dave [1 ,12 ]
Ghosh, Shrobana [1 ]
Khan, Sebastian [1 ]
Kolitsidou, Panagiota [1 ]
Vano-Vinuales, Alex [1 ,2 ,13 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales
[2] Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Imperial Coll London, South Kensington Campus, London SW7 2AZ, England
[4] Univ Portsmouth, Portsmouth PO1 3FX, England
[5] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[6] Univ Utrecht, Inst Gravitat & Subatom Phys GRASP, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
[7] Univ Amsterdam, Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[8] Kings Coll London, London WC2R 2LS, England
[9] Kavli Inst Astrophys & Space Res, MIT, 77 Massachusetts Ave,37-664H, Cambridge, MA 02139 USA
[10] LIGO Lab, 77 Massachusetts Ave,37-664H, Cambridge, MA 02139 USA
[11] CALTECH, Theoret Astrophys Grp, Pasadena, CA 91125 USA
[12] Acad Sinica, Inst Phys, Taipei 115201, Taiwan
[13] Univ Lisboa UL, Inst Super Tecn IST, Dept Fis, CENTRA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
基金
瑞士国家科学基金会; 欧洲研究理事会; 英国科学技术设施理事会; 美国国家科学基金会;
关键词
GRAVITATIONAL-WAVES; COMPACT BINARIES; FINAL SPIN; COALESCENCE;
D O I
10.1103/PhysRevD.109.044032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a public catalog of numerical -relativity binary -black -hole simulations. The catalog contains datasets from 80 distinct configurations of precessing binary -black -hole systems, with mass ratios up to m2/m1 = 8, dimensionless spin magnitudes on the larger black hole up to j hole is nonspinning), and a range of five values of spin misalignment for each mass-ratio/spin combination. We discuss the physical properties of the configurations in our catalog, and assess the accuracy of the initial configuration of each simulation and of the gravitational waveforms. We perform a careful analysis of the errors due to the finite resolution of our simulations and the finite distance from the source at which we extract the waveform data and provide a conservative estimate of the mismatch accuracy. We find that the upper limit on the mismatch uncertainty of our waveforms (including multipoles l <= 5) is 0.4%. In doing this we present a consistent approach to combining mismatch uncertainties from multiple error sources. We compare this release to previous catalogs and discuss how these new simulations complement the existing public datasets. In particular, this is the first catalog to uniformly cover this parameter space of single -spin binaries and there was previously only sparse coverage of the precessing-binary parameter space for mass ratios greater than or similar to 5. We discuss applications of these new data, and the most urgent directions for future simulation work.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Effective-one-body numerical-relativity waveform model for eccentric spin-precessing binary black hole coalescence
    Liu, Xiaolin
    Cao, Zhoujian
    Zhu, Zong-Hong
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (19)
  • [2] A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers
    Blackman, Jonathan
    Field, Scott E.
    Scheel, Mark A.
    Galley, Chad R.
    Hemberger, Daniel A.
    Schmidt, Patricia
    Smith, Rory
    PHYSICAL REVIEW D, 2017, 95 (10)
  • [3] Eccentric binary black hole simulations with numerical relativity
    Ficarra, Giuseppe
    Lousto, Carlos O.
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [4] Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms
    Hannam, Mark
    Schmidt, Patricia
    Bohe, Alejandro
    Haegel, Leila
    Husa, Sascha
    Ohme, Frank
    Pratten, Geraint
    Puerrer, Michael
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [5] The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries
    Ajith, P.
    Boyle, Michael
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Cadonati, Laura
    Campanelli, Manuela
    Chu, Tony
    Etienne, Zachariah B.
    Fairhurst, Stephen
    Hannam, Mark
    Healy, James
    Hinder, Ian
    Husa, Sascha
    Kidder, Lawrence E.
    Krishnan, Badri
    Laguna, Pablo
    Liu, Yuk Tung
    London, Lionel
    Lousto, Carlos O.
    Lovelace, Geoffrey
    MacDonald, Ilana
    Marronetti, Pedro
    Mohapatra, Satya
    Moesta, Philipp
    Mueller, Doreen
    Mundim, Bruno C.
    Nakano, Hiroyuki
    Ohme, Frank
    Paschalidis, Vasileios
    Pekowsky, Larne
    Pollney, Denis
    Pfeiffer, Harald P.
    Ponce, Marcelo
    Puerrer, Michael
    Reifenberger, George
    Reisswig, Christian
    Santamaria, Lucia
    Scheel, Mark A.
    Shapiro, Stuart L.
    Shoemaker, Deirdre
    Sopuerta, Carlos F.
    Sperhake, Ulrich
    Szilagyi, Bela
    Taylor, Nicholas W.
    Tichy, Wolfgang
    Tsatsin, Petr
    Zlochower, Yosef
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
  • [7] Numerical relativity waveform surrogate model for generically precessing binary black hole mergers
    Blackman, Jonathan
    Field, Scott E.
    Scheel, Mark A.
    Galley, Chad R.
    Ott, Christian D.
    Boyle, Michael
    Kidder, Lawrence E.
    Pfeiffer, Harald P.
    Szilagyi, Bela
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [8] High-Order Numerical-Relativity Simulations of Binary Neutron Stars
    Radice, David
    Rezzolla, Luciano
    Galeazzi, Filippo
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2014, 2015, 498 : 121 - 126
  • [9] The status of black-hole binary merger simulations with numerical relativity
    McWilliams, Sean T.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (13)
  • [10] Numerical relativity simulations of precessing binary neutron star mergers
    Dietrich, Tim
    Bernuzzi, Sebastiano
    Bruegmann, Bernd
    Ujevic, Maximiliano
    Tichy, Wolfgang
    PHYSICAL REVIEW D, 2018, 97 (06)