Dual symplectic classical circuits: An exactly solvable model of many-body chaos

被引:2
|
作者
Christopoulos, Alexios [1 ]
De Luca, Andrea [1 ]
Kovrizhin, Dmitry L. [1 ]
Prosen, Tomaz [2 ]
机构
[1] CY Cergy Paris Univ, Lab Phys Theor & Modelisat, CNRS, F-95302 Cergy Pontoise, France
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
SCIPOST PHYSICS | 2024年 / 16卷 / 02期
关键词
D O I
10.21468/SciPostPhys.16.2.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a general exact method of calculating dynamical correlation functions in dual symplectic brick-wall circuits in one dimension. These are deterministic classical many-body dynamical systems which can be interpreted in terms of symplectic dynamics in two orthogonal (time and space) directions. In close analogy with quantum dual-unitary circuits, we prove that two-point dynamical correlation functions are nonvanishing only along the edges of the light cones. The dynamical correlations are exactly computable in terms of a one-site Markov transfer operator, which is generally of infinite dimensionality. We test our theory in a specific family of dual-symplectic circuits, describing the dynamics of a classical Floquet spin chain. Remarkably, expressing these models in the form of a composition of rotations leads to a transfer operator with a block diagonal form in the basis of spherical harmonics. This allows us to obtain analytical predictions for simple local observables. We demonstrate the validity of our theory by comparison with Monte Carlo simulations, displaying excellent agreement with the latter for a choice of observables.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] THE EXACTLY SOLVABLE MODEL OF DYNAMIC CHAOS
    DEMUTSKY, VP
    POLOVIN, RV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (04): : 61 - 63
  • [22] Entanglement and the Born-Oppenheimer approximation in an exactly solvable quantum many-body system
    Peter A. Bouvrie
    Ana P. Majtey
    Malte C. Tichy
    Jesus S. Dehesa
    Angel R. Plastino
    The European Physical Journal D, 2014, 68
  • [23] Entanglement and the Born-Oppenheimer approximation in an exactly solvable quantum many-body system
    Bouvrie, Peter A.
    Majtey, Ana P.
    Tichy, Malte C.
    Dehesa, Jesus S.
    Plastino, Angel R.
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (11):
  • [24] EXACTLY SOLUBLE MODEL FOR TESTING MANY-BODY APPROXIMATION TECHNIQUES
    HANNON, JM
    GARROD, C
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (12): : 1197 - 1197
  • [25] Novel solvable many-body problems
    Bihun, Oksana
    Calogero, Francesco
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (02) : 190 - 212
  • [26] A Solvable Many-Body Problem in the Plane
    F. Calogero
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 289 - 293
  • [27] Novel solvable many-body problems
    Oksana Bihun
    Francesco Calogero
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 190 - 212
  • [28] A solvable many-body problem in the plane
    Calogero, F
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (03) : 289 - 293
  • [30] Another New Solvable Many-Body Model of Goldfish Type
    Calogero, Francesco
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8