Two-Stage Deep Convolutional Neural Networks for DOA Estimation in Impulsive Noise

被引:2
作者
Cai, Ruiyan [1 ]
Tian, Quan [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Direction-of-arrival estimation; Signal processing algorithms; Decoding; Antenna arrays; Convolutional neural networks; Array signal processing; Adversarial learning; deep convolutional neural network; direction of arrival (DOA); impulsive noise; MIMO RADAR; ALGORITHM; CORRENTROPY; ESPRIT;
D O I
10.1109/TAP.2023.3332502
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Direction-of-arrival (DOA) estimation methods have been widely and deeply studied in Gaussian noise environments. However, if there is impulsive channel noise, the performance of the method will significantly decline, and reasonable results may not be obtained. Considering that the high performance of model-driven DOA estimation algorithms requires large arrays and more sample data, this communication proposes a two-stage deep convolutional neural network (TSDCN) algorithm for DOA estimation. The first stage suppresses alpha-stable distributed impulsive noise through an adversarial learning network, and the second stage realizes DOA estimation through a deep convolutional neural network. Simulation and real-world experiments show that the TSDCN outperforms most DOA estimation algorithms in terms of robustness and estimation accuracy in impulsive noise environments.
引用
收藏
页码:2047 / 2051
页数:5
相关论文
共 20 条
[1]   Deep Learning for DOA Estimation in MIMO Radar Systems via Emulation of Large Antenna Arrays [J].
Ahmed, Aya Mostafa ;
Thanthrige, Udaya Sampath K. P. Miriya ;
El Gamal, Aly ;
Sezgin, Aydin .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (05) :1559-1563
[2]   APRD-MUSIC Algorithm DOA Estimation for Reactance Based Uniform Circular Array [J].
Basikolo, Thomas ;
Arai, Hiroyuki .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (10) :4415-4422
[3]   Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter [J].
Belkacemi, Hocine ;
Marcos, Sylvie .
SIGNAL PROCESSING, 2007, 87 (07) :1547-1558
[4]   Off-Grid DOA Estimation Using Sparse Bayesian Learning in MIMO Radar With Unknown Mutual Coupling [J].
Chen, Peng ;
Cao, Zhenxin ;
Chen, Zhimin ;
Wang, Xianbin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) :208-220
[5]   DOA Estimation for Coprime Array With Mixed Noise Scenario via Phased Fractional Low-Order Moment [J].
Dong, Xudong ;
Zhang, Xiaofei ;
Zhao, Jun ;
Sun, Meng .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (11) :2567-2571
[6]   Multi-BS Spatial Spectrum Fusion for 2-D DOA Estimation and Localization Using UCA in Massive MIMO System [J].
He, Di ;
Chen, Xin ;
Pei, Ling ;
Zhu, Fusheng ;
Jiang, Lingge ;
Yu, Wenxian .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[7]  
He J, 2008, IEEE T AERO ELEC SYS, V44, P1221, DOI 10.1109/TAES.2008.4655376
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications [J].
Li, Yingsong ;
Jiang, Zhengxiong ;
Shi, Wanlu ;
Han, Xiao ;
Chen, Badong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) :1915-1919
[10]   A subspace-based direction finding algorithm using fractional lower order statistics [J].
Liu, TH ;
Mendel, JM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (08) :1605-1613