Discrete quantum structures I: Quantum predicate logic

被引:3
作者
Kornell, Andre [1 ]
机构
[1] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
关键词
Dagger compact category; quantum logic; quantum relation; quantum set; AUTOMORPHISM-GROUPS; ALGEBRAS; THEOREM;
D O I
10.4171/JNCG/531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discrete quantum structure is a discrete quantum space that is equipped with relations and functions of various finite arities. Discrete quantum spaces are identified with hereditarily atomic von Neumann algebras, their relations with projection operators, and their functions with unital normal *-homomorphisms. The propositional quantum logic of Birkhoff and von Neumann has been extended to a predicate quantum logic by Weaver; we investigate this predicate quantum logic as the internal logic of discrete quantum structures. We extend this predicate quantum logic to include function symbols and an equality symbol. Overall, we recover the basic structures of discrete quantum mathematics from physical first principles. More complicated structures will be recovered similarly in part II of this paper.
引用
收藏
页码:337 / 382
页数:46
相关论文
共 59 条
[1]  
Abramsky S, 2009, HANDBOOK OF QUANTUM LOGIC AND QUANTUM STRUCTURES: QUANTUM LOGIC, P261, DOI 10.1016/B978-0-444-52869-8.50010-4
[2]  
[Anonymous], 2006, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics
[3]   Quantum and non-signalling graph isomorphisms [J].
Atserias, Albert ;
Mancinska, Laura ;
Roberson, David E. ;
Samal, Robert ;
Severini, Simone ;
Varvitsiotis, Antonios .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 :289-328
[4]   Quantum automorphism groups of homogeneous graphs [J].
Banica, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :243-280
[5]   Noncommuting mixed states cannot be broadcast [J].
Barnum, H ;
Caves, CM ;
Fuchs, CA ;
Jozsa, R ;
Schumacher, B .
PHYSICAL REVIEW LETTERS, 1996, 76 (15) :2818-2821
[6]   Quantum automorphism groups of finite graphs [J].
Bichon, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :665-673
[7]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[8]  
Blackadar B., 2006, ENCYCL MATH SCI, V122
[9]   Bigalois Extensions and the Graph Isomorphism Game [J].
Brannan, Michael ;
Chirvasitu, Alexandru ;
Eifler, Kari ;
Harris, Samuel ;
Paulsen, Vern ;
Su, Xiaoyu ;
Wasilewski, Mateusz .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (03) :1777-1809
[10]  
Cameron PJ, 2007, ELECTRON J COMB, V14