Towards Fair Graph Neural Networks via Graph Counterfactual

被引:9
|
作者
Guo, Zhimeng [1 ]
Li, Jialiang [2 ]
Xiao, Teng [1 ]
Ma, Yao [3 ]
Wang, Suhang [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] New Jersey Inst Technol, Newark, NJ USA
[3] Rensselaer Polytech Inst, Troy, NY USA
基金
美国国家科学基金会;
关键词
Graph neural networks; Counterfactual fairness; Causal learning;
D O I
10.1145/3583780.3615092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks have shown great ability in representation (GNNs) learning on graphs, facilitating various tasks. Despite their great performance in modeling graphs, recent works show that GNNs tend to inherit and amplify the bias from training data, causing concerns of the adoption of GNNs in high-stake scenarios. Hence, many efforts have been taken for fairness-aware GNNs. However, most existing fair GNNs learn fair node representations by adopting statistical fairness notions, which may fail to alleviate bias in the presence of statistical anomalies. Motivated by causal theory, there are several attempts utilizing graph counterfactual fairness to mitigate root causes of unfairness. However, these methods suffer from non-realistic counterfactuals obtained by perturbation or generation. In this paper, we take a causal view on fair graph learning problem. Guided by the casual analysis, we propose a novel framework CAF, which can select counterfactuals from training data to avoid non-realistic counterfactuals and adopt selected counterfactuals to learn fair node representations for node classification task. Extensive experiments on synthetic and real-world datasets show the effectiveness of CAF. Our code is available at https://github.com/TimeLovercc/CAF- GNN.
引用
收藏
页码:669 / 678
页数:10
相关论文
共 50 条
  • [31] Graph convolutional neural networks via scattering
    Zou, Dongmian
    Lerman, Gilad
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) : 1046 - 1074
  • [32] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681
  • [33] Graph Rewriting for Graph Neural Networks
    Machowczyk, Adam
    Heckel, Reiko
    GRAPH TRANSFORMATION, ICGT 2023, 2023, 13961 : 292 - 301
  • [34] Graph Mining with Graph Neural Networks
    Jin, Wei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1119 - 1120
  • [35] Graph Clustering with Graph Neural Networks
    Tsitsulin, Anton
    Palowitch, John
    Perozzi, Bryan
    Mueller, Emmanuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [36] Advancing Graph Counterfactual Fairness Through Fair Representation Learning
    Wang, Zichong
    Chu, Zhibo
    Blanco, Ronald
    Chen, Zhong
    Chen, Shu-Ching
    Zhang, Wenbin
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT VII, ECML PKDD 2024, 2024, 14947 : 40 - 58
  • [37] Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations
    Bo, Deyu
    Hu, BinBin
    Wang, Xiao
    Zhang, Zhiqiang
    Shi, Chuan
    Zhou, Jun
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3913 - 3921
  • [38] Theoretically Improving Graph Neural Networks via Anonymous Walk Graph Kernels
    Long, Qingqing
    Jin, Yilun
    Wu, Yi
    Song, Guojie
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1204 - 1214
  • [39] Towards Inductive and Efficient Explanations for Graph Neural Networks
    Luo, Dongsheng
    Zhao, Tianxiang
    Cheng, Wei
    Xu, Dongkuan
    Han, Feng
    Yu, Wenchao
    Liu, Xiao
    Chen, Haifeng
    Zhang, Xiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) : 5245 - 5259
  • [40] Fairwalk: Towards Fair Graph Embedding
    Rahman, Tahleen
    Surma, Bartlomiej
    Backes, Michael
    Zhang, Yang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3289 - 3295