Self-Assembled Hyperbranched Gold Nanoarrays Decode Serum United Urine Metabolic Fingerprints for Kidney Tumor Diagnosis

被引:19
作者
Wang, Yuning [1 ,2 ]
Xu, Xiaoyu [1 ,2 ]
Fang, Yuzheng [3 ]
Yang, Shouzhi [1 ,2 ]
Wang, Qirui [4 ]
Liu, Wanshan [1 ,2 ]
Zhang, Juxiang [1 ,2 ]
Liang, Dingyitai [1 ]
Zhai, Wei [3 ]
Qian, Kun [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, State Key Lab Syst Med Canc, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200030, Peoples R China
[3] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Urol, Shanghai 200127, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Med Sch, Hlth Management Ctr, Shanghai 200127, Peoples R China
基金
国家重点研发计划;
关键词
gold nanoarrays; self-assembly; mass spectrometry; metabolic fingerprint; kidney tumor; RENAL-CELL CARCINOMA; METAL NANOPARTICLES; MASS-SPECTROMETRY; BIOMARKERS;
D O I
10.1021/acsnano.3c10717
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Serum united urine metabolic analysis comprehensively reveals the disease status for kidney diseases in particular. Thus, the precise and convenient acquisition of metabolic molecular information from united biofluids is vitally important for clinical disease diagnosis and biomarker discovery. Laser desorption/ionization mass spectrometry (LDI-MS) presents various advantages in metabolic analysis; however, there remain challenges in ionization efficiency and MS signal reproducibility. Herein, we constructed a self-assembled hyperbranched black gold nanoarray (HyBrAuNA) assisted LDI-MS platform to profile serum united urine metabolic fingerprints (S-UMFs) for diagnosis of early stage renal cell carcinoma (RCC). The closely packed HyBrAuNA afforded strong electromagnetic field enhancement and high photothermal conversion efficacy, enabling effective ionization of low abundant metabolites for S-UMF collection. With a uniform nanoarray, the platform presented excellent reproducibility to ensure the accuracy of S-UMFs obtained in seconds. When it was combined with automated machine learning analysis of S-UMFs, early stage RCC patients were discriminated from the healthy controls with an area under the curve (AUC) > 0.99. Furthermore, we screened out a panel of 9 metabolites (4 from serum and 5 from urine) and related pathways toward early stage kidney tumor. In view of its high-throughput, fast analytical speed, and low sample consumption, our platform possesses potential in metabolic profiling of united biofluids for disease diagnosis and pathogenic mechanism exploration.
引用
收藏
页码:2409 / 2420
页数:12
相关论文
共 59 条
[1]   Serum and urine analysis with gold nanoparticle-assisted laser desorption/ionization mass spectrometry for renal cell carcinoma metabolic biomarkers discovery [J].
Arendowski, Adrian ;
Ossolinski, Krzysztof ;
Ossolinska, Anna ;
Ossolinski, Tadeusz ;
Niziol, Joanna ;
Ruman, Tomasz .
ADVANCES IN MEDICAL SCIENCES, 2021, 66 (02) :326-335
[2]   Machine Learning-Enabled Renal Cell Carcinoma Status Prediction Using Multiplatform Urine-Based Metabolomics [J].
Bifarin, Olatomiwa O. ;
Gaul, David A. ;
Sah, Samyukta ;
Arnold, Rebecca S. ;
Ogan, Kenneth ;
Master, Viraj A. ;
Roberts, David L. ;
Bergquist, Sharon H. ;
Petros, John A. ;
Fernandez, Facundo M. ;
Edison, Arthur S. .
JOURNAL OF PROTEOME RESEARCH, 2021, 20 (07) :3629-3641
[3]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[4]   TiO2/MXene-Assisted LDI-MS for Urine Metabolic Profiling in Urinary Disease [J].
Chen, Junyu ;
Li, Yuze ;
Jiang, Yuming ;
Mao, Liucheng ;
Lai, Mi ;
Jiang, Lixia ;
Liu, Huihui ;
Nie, Zongxiu .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (52)
[5]   Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis [J].
Chen, Xiaonan ;
Shu, Weikang ;
Zhao, Liang ;
Wan, Jingjing .
VIEW, 2023, 4 (01)
[6]   Proteomics of liquid biopsies: Depicting RCC infiltration into the renal vein by MS analysis of urine and plasma [J].
Chinello, Clizia ;
Stella, Martina ;
Piga, Isabella ;
Smith, Andrew James ;
Bovo, Giorgio ;
Varallo, Marta ;
Ivanova, Maria ;
Denti, Vanna ;
Grasso, Marco ;
Grasso, Angelica ;
Del Puppo, Marina ;
Zaravinos, Apostolos ;
Magni, Fulvio .
JOURNAL OF PROTEOMICS, 2019, 191 :29-37
[7]   Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Escudier, B. ;
Porta, C. ;
Schmidinger, M. ;
Rioux-Leclercq, N. ;
Bex, A. ;
Khoo, V. ;
Grunwald, V. ;
Gillessen, S. ;
Horwich, A. .
ANNALS OF ONCOLOGY, 2019, 30 (05) :706-720
[8]   Surface Engineering and Controlled Ripening for Seed-Mediated Growth of Au Islands on Au Nanocrystals [J].
Feng, Ji ;
Xu, Dongdong ;
Yang, Fan ;
Chen, Jinxing ;
Wu, Chaolumen ;
Yin, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (31) :16958-16964
[9]   Role of metabolomics-derived biomarkers to identify renal cell carcinoma: a comprehensive perspective of the past ten years and advancements [J].
Gupta, Ashish ;
Nath, Kavindra ;
Bansal, Navneeta ;
Kumar, Manoj .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2020, 20 (01) :5-18
[10]   Plasmons in Strongly Coupled Metallic Nanostructures [J].
Halas, Naomi J. ;
Lal, Surbhi ;
Chang, Wei-Shun ;
Link, Stephan ;
Nordlander, Peter .
CHEMICAL REVIEWS, 2011, 111 (06) :3913-3961