Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors

被引:5
作者
Zhang, Yazhen [1 ]
Wang, Liyuan [2 ]
Kong, Xiangrui [1 ]
Chen, Zhihui [1 ]
Zhong, Sitong [1 ]
Li, Xinlei [1 ]
Shan, Ruiyang [1 ]
You, Xiaomei [1 ]
Wei, Kang [2 ]
Chen, Changsong [1 ]
机构
[1] Fujian Acad Agr Sci, Tea Res Inst, Fuzhou 350012, Peoples R China
[2] Chinese Acad Agr Sci TRICAAS, Minist Agr, Natl Ctr Tea Improvement, Key Lab Tea Biol & Resources Utilizat,Tea Res Inst, Hangzhou 310008, Peoples R China
关键词
Camellia sinensis; leaf color; metabolome; transcriptome; lipid; flavonoid; ANTHOCYANIN BIOSYNTHESIS; SUBSTRATE; GLYCOSYLTRANSFERASES; PROANTHOCYANIDINS; ACYLTRANSFERASE; ACCUMULATION;
D O I
10.3390/ijms25010242
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers
    S. Paul
    F. N. Wachira
    W. Powell
    R. Waugh
    Theoretical and Applied Genetics, 1997, 94 : 255 - 263
  • [32] Lifestyle Characteristics and Gene Expression Analysis of Colletotrichum camelliae Isolated from Tea Plant [Camellia sinensis (L.) O. Kuntze] Based on Transcriptome
    Xiong, Fei
    Wang, Yuchun
    Lu, Qinhua
    Hao, Xinyuan
    Fang, Wanping
    Yang, Yajun
    Zhu, Xujun
    Wang, Xinchao
    BIOMOLECULES, 2020, 10 (05)
  • [33] Transcription factor WRKY14 mediates resistance of tea plants (Camellia sinensis (L.) O. Kuntze) to blister blight
    Liu, Shuyuan
    Zhang, Qiqi
    Guan, Changfei
    Wu, Daying
    Zhou, Tianshan
    Yu, Youben
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2021, 115
  • [34] Factors affecting germination and conversion frequency of somatic embryos of tea [Camellia sinensis (L.) O. !Kuntze]
    Mondal, TK
    Bhattacharya, A
    Sood, A
    Ahuja, PS
    JOURNAL OF PLANT PHYSIOLOGY, 2002, 159 (12) : 1317 - 1321
  • [35] Accumulation of theanine in tea plant (Camellia sinensis (L.) O. Kuntze): Biosynthesis, transportation and strategy for improvement
    Luo, Qianting
    He, Hua-Feng
    PLANT SCIENCE, 2025, 352
  • [36] The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze)
    Samynathan, Ramkumar
    Shanmugam, Kiruthikaa
    Nagarajan, Chithraanjane
    Murugasamy, Harsha
    Ilango, R. Victor J.
    Shanmugam, Ashokraj
    Venkidasamy, Baskar
    Thiruvengadam, Muthu
    PLANT GENE, 2021, 27
  • [37] Caffeine Biosynthesis and Degradation in Tea [Camellia sinensis (L.) O. Kuntze] is under Developmental and Seasonal Regulation
    Mohanpuria, Prashant
    Kumar, Vinay
    Joshi, Robin
    Gulati, Ashu
    Ahuja, Paramvir Singh
    Yadav, Sudesh Kumar
    MOLECULAR BIOTECHNOLOGY, 2009, 43 (02) : 104 - 111
  • [38] Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review
    Kottawa-Arachchi, J. Dananjaya
    Gunasekare, M. T. Kumudini
    Ranatunga, Mahasen A. B.
    GENETIC RESOURCES AND CROP EVOLUTION, 2019, 66 (01) : 259 - 273
  • [39] Influence of exogenous calcium on the physiological, biochemical, phytochemical and ionic homeostasis of tea plants (Camellia sinensis (L.) O. Kuntze) subjected to fluorine stress
    Luo, Jinlei
    Ni, Dejiang
    He, Chang
    Zhang, Shanming
    Liu, Siyi
    Du, Yaru
    Chen, Yuqiong
    PLANT GROWTH REGULATION, 2019, 87 (03) : 455 - 465
  • [40] Low temperature effects on carotenoids biosynthesis in the leaves of green and albino tea plant (Camellia sinensis (L.) O. Kuntze)
    Yang, Ya-Zhuo
    Li, Tong
    Teng, Rui-Min
    Han, Miao-Hua
    Zhuang, Jing
    SCIENTIA HORTICULTURAE, 2021, 285