Modeling of nonlinear and nonstationary stochasticity for atomic ensembles

被引:5
作者
Qin, Bodong [1 ,2 ,3 ,4 ]
Wang, Zhuo [1 ,2 ,3 ]
Wang, Ruigang [1 ]
Li, Feng [1 ,2 ,3 ,4 ]
Liu, Zehua [1 ,2 ,3 ,4 ]
Fang, Chi [1 ,2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Inst Large Scale Sci Facil, Beijing 100191, Peoples R China
[3] Beihang Univ, Ctr Zero Magnet Field Sci, Beijing 100191, Peoples R China
[4] Natl Inst Extremely Weak Magnet Field Infrastruct, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic system modeling; Parameter identification; Ito's lemma; Allan variance analysis; Atomic ensembles; USEFUL LIFE PREDICTION; HYBRID; ALLAN; WEAR;
D O I
10.1016/j.isatra.2023.09.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of stochastic modeling of atomic ensembles under multi-source noise and makes the model interpretable. First, based on Ito's lemma and Allan variance analysis (ITO-AVAR), an approach is proposed to model nonstationary stochastic submodels of atomic ensembles. On this basis, the variance decomposition and nonlinear optimization algorithms are utilized to hybridize modeling atomic ensembles with nonlinear and nonstationary properties. Second, an Ito's lemma dynamic allan variance analysis (ITO-DAVAR) approach is developed for online modeling of atomic ensembles. Further, an atomic ensembles sensitivity enhancement scheme based on the proposed approach is given, which effectively promotes the progress of quantum instrument engineering. Finally, the proposed scheme are deployed in the optical pumping magnetometer and spin-exchange relaxation-free comagnetometer, respectively, while experimentally verifying the sensitivity of the spin-exchange relaxation-free comagnetometer reaches 5.36 x 10-6 deg s-1 Hz-1/2.
引用
收藏
页码:557 / 571
页数:15
相关论文
共 46 条
[1]   Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification [J].
Alcan, Gokhan ;
Unel, Mustafa ;
Aran, Volkan ;
Yilmaz, Metin ;
Gurel, Cetin ;
Koprubasi, Kerem .
MEASUREMENT, 2019, 137 :71-81
[2]   A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer [J].
Altan, Aytac ;
Karasu, Seckin ;
Zio, Enrico .
APPLIED SOFT COMPUTING, 2021, 100
[3]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[4]   Application of multi-SVM classifier and hybrid GSAPSO algorithm for fault diagnosis of electrical machine drive system [J].
Ding, Shichuan ;
Hao, Menglu ;
Cui, Zhiwei ;
Wang, Yinjiang ;
Hang, Jun ;
Li, Xueyi .
ISA TRANSACTIONS, 2023, 133 :529-538
[5]   Analysis and modeling of inertial sensors using Allan variance [J].
EI-Sheimy, Naser ;
Hou, Haiying ;
Niu, Xiaoji .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (01) :140-149
[6]   Analysis on the effect of electron spin polarization on a hybrid optically pumped K-Rb-21Ne co- magnetometer [J].
Fu, Yang ;
Fan, Wenfeng ;
Ruan, Jiasen ;
Liu, Ye ;
Wang, Zhuo ;
Zhou, Xinxiu ;
Quan, Wei .
OPTICS EXPRESS, 2022, 30 (23) :42114-42128
[7]   A New Predictive Approach to Wide-Area Out-of-Step Protection [J].
Hashemi, Sayyed Mohammad ;
Sanaye-Pasand, Majid .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) :1890-1898
[8]   Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption [J].
He, Yan-Lin ;
Chen, Lei ;
Gao, Yanlu ;
Ma, Jia-Hui ;
Xu, Yuan ;
Zhu, Qun-Xiong .
ISA TRANSACTIONS, 2022, 127 :350-360
[9]   Tensor product-based model transformation approach to tower crane systems modeling [J].
Hedrea, Elena-Lorena ;
Precup, Radu-Emil ;
Roman, Raul-Cristian ;
Petriu, Emil M. .
ASIAN JOURNAL OF CONTROL, 2021, 23 (03) :1313-1323
[10]   Markovian RNN: An Adaptive Time Series Prediction Network With HMM-Based Switching for Nonstationary Environments [J].
Ilhan, Fatih ;
Karaahmetoglu, Oguzhan ;
Balaban, Ismail ;
Kozat, Suleyman Serdar .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) :715-728