High-resolution climate projection dataset based on CMIP6 for Peru and Ecuador: BASD-CMIP6-PE

被引:4
|
作者
Fernandez-Palomino, Carlos Antonio [1 ,2 ,3 ]
Hattermann, Fred F. [1 ,2 ]
Krysanova, Valentina [1 ,2 ]
Vega-Jacome, Fiorella [3 ]
Menz, Christoph [1 ,2 ]
Gleixner, Stephanie [1 ,2 ]
Bronstert, Axel [3 ]
机构
[1] Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam, Germany
[2] Leibniz Assoc, POB 60 12 03, D-14412 Potsdam, Germany
[3] Univ Potsdam, Inst Environm Sci & Geog, Potsdam, Germany
关键词
EARTH SYSTEM MODEL; RAINFALL; VARIABILITY; PERFORMANCE; ENSEMBLE; VERSION;
D O I
10.1038/s41597-023-02863-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we present BASD-CMIP6-PE, a high-resolution (1d, 10 km) climate dataset for Peru and Ecuador based on the bias-adjusted and statistically downscaled CMIP6 climate projections of 10 GCMs. This dataset includes both historical simulations (1850-2014) and future projections (2015-2100) for precipitation and minimum, mean, and maximum temperature under three Shared Socioeconomic Pathways (SSP1-2.6, SSP3-7.0, and SSP5-8.5). The BASD-CMIP6-PE climate data were generated using the trend-preserving Bias Adjustment and Statistical Downscaling (BASD) method. The BASD performance was evaluated using observational data and through hydrological modeling across Peruvian and Ecuadorian river basins in the historical period. Results demonstrated that BASD significantly reduced biases between CMIP6-GCM simulations and observational data, enhancing long-term statistical representations, including mean and extreme values, and seasonal patterns. Furthermore, the hydrological evaluation highlighted the appropriateness of adjusted GCM simulations for simulating streamflow, including mean, low, and high flows. These findings underscore the reliability of BASD-CMIP6-PE in assessing regional climate change impacts on agriculture, water resources, and hydrological extremes.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Changes to population-based emergence of climate change from CMIP5 to CMIP6
    Douglas, Hunter C.
    Harrington, Luke J.
    Joshi, Manoj
    Hawkins, Ed
    Revell, Laura E.
    Frame, David J.
    ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (01)
  • [22] Selection of CMIP6 GCM with projection of climate over the Amu Darya River Basin
    Salehie, Obaidullah
    Hamed, Mohammed Magdy
    bin Ismail, Tarmizi
    Tam, Tze Huey
    Shahid, Shamsuddin
    THEORETICAL AND APPLIED CLIMATOLOGY, 2023, 151 (3-4) : 1185 - 1203
  • [23] The Arctic Surface Climate in CMIP6: Status and Developments since CMIP5
    Davy, Richard
    Outten, Stephen
    JOURNAL OF CLIMATE, 2020, 33 (18) : 8047 - 8068
  • [24] CMIP6 Evaluation and Projection of Temperature and Precipitation over China
    Yang, Xiaoling
    Zhou, Botao
    Xu, Ying
    Han, Zhenyu
    ADVANCES IN ATMOSPHERIC SCIENCES, 2021, 38 (05) : 817 - 830
  • [25] Evaluation of global teleconnections in CMIP6 climate projections using complex networks
    Dalelane, Clementine
    Winderlich, Kristina
    Walter, Andreas
    EARTH SYSTEM DYNAMICS, 2023, 14 (01) : 17 - 37
  • [26] CMIP6 Evaluation and Projection of Temperature and Precipitation over China
    Xiaoling Yang
    Botao Zhou
    Ying Xu
    Zhenyu Han
    Advances in Atmospheric Sciences, 2021, 38 : 817 - 830
  • [27] Climate Change Projections for the Australian Monsoon From CMIP6 Models
    Narsey, S. Y.
    Brown, J. R.
    Colman, R. A.
    Delage, F.
    Power, S. B.
    Moise, A. F.
    Zhang, H.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
  • [28] Cloud Climatologies from Global Climate Models-A Comparison of CMIP5 and CMIP6 Models with Satellite Data
    Lauer, Axel
    Bock, Lisa
    Hassler, Birgit
    Schroeder, Marc
    Stengel, Martin
    JOURNAL OF CLIMATE, 2023, 36 (02) : 281 - 311
  • [29] Global Future Climate Signal by Latitudes Using CMIP6 GCMs
    Song, Young Hoon
    Chung, Eun-Sung
    Shahid, Shamsuddin
    EARTHS FUTURE, 2024, 12 (03)
  • [30] Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria
    Shiru, Mohammed Sanusi
    Chung, Eun-Sung
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 146 (1-2) : 599 - 615