Bio-Templated Silver Nanopatterns for Photothermal and Antifogging Coatings

被引:3
作者
De, Swarnalok [1 ]
Nguyen, Hoang M. [1 ]
Zou, Fangxin [1 ]
Basarir, Fevzihan [1 ]
Mousavi, Maryam [1 ]
Maekinen, Kristiina [2 ]
Kostiainen, Mauri A. [3 ]
Vapaavuori, Jaana [1 ]
机构
[1] Aalto Univ, Dept Chem & Mat Sci, Aalto 00076, Finland
[2] Univ Helsinki, Dept Agr Sci, Helsinki 00790, Finland
[3] Aalto Univ, Dept Bioprod & Biosyst, Aalto 00076, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
antifogging coating; biohybrid functional material; photothermal metamaterial; plant virus nanotechnology; silver nanoparticles; SURFACE MODIFICATION; POTATO-VIRUS; NANOPARTICLES; THERAPY; GOLD;
D O I
10.1002/admi.202300828
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transparent photothermal coatings based on plasmonic noble metals often face a trade-off between achieved temperatures and transmittances. This challenge arises from the fact that plasmonic nanoparticles (NPs), which rely on their size and structures, selectively absorb light of various wavelengths and convert it into heat. In the cases of randomly arranged plasmonic NPs, absorbances are predominantly in the visible range, leading to lowered transmittances. In this work, the self-assembly behavior of a biotemplate containing flexible potato virus A (PVA) is used to produce network-like surface patterns with controllable intermittent vacancies. These templates effectively anchor silver nanoparticles (AgNPs), forming dense arrays of plasmonic hotspots interspersed with vacant regions. With this approach, a temperature increase of 21 degrees C above ambient temperature under 1-sun radiation is achieved while maintaining a visible light transmittance as high as 78% measured at 550 nm wavelength. The PVA biotemplated AgNPs show excellent potential as antifogging coating, exhibiting 2-3 times faster defogging rates compared to uncoated samples in both indoor and outdoor conditions. Overall, a platform is presented for biotemplating metal NPs, the development of long-range surface patterns with controlled vacancies, and the demonstration of transparent photothermal activity with an antifogging application. In this study, a glass substrate patterned with dense arrays of silver nanoparticles templated on an interconnected network of flexible virus nanoparticles is developed. The templated substrate demonstrates outstanding photothermal performance without compromising excellent light transmittance. Additionally, it displays highly efficient defogging capabilities in various environmental conditions, including both indoor and outdoor settings.image
引用
收藏
页数:10
相关论文
共 37 条
[1]   Virus templated metallic nanoparticles [J].
Aljabali, Alaa A. A. ;
Barclay, J. Elaine ;
Lomonossoff, George P. ;
Evans, David J. .
NANOSCALE, 2010, 2 (12) :2596-2600
[2]   Plasmonic photothermal properties of silver nanoparticle grating films [J].
Anuthum, Siriporn ;
Hasegawa, Fugo ;
Lertvachirapaiboon, Chutiparn ;
Shinbo, Kazunari ;
Kato, Keizo ;
Ounnunkad, Kontad ;
Baba, Akira .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (11) :7060-7067
[3]   The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery [J].
Austin, Lauren A. ;
Mackey, Megan A. ;
Dreaden, Erik C. ;
El-Sayed, Mostafa A. .
ARCHIVES OF TOXICOLOGY, 2014, 88 (07) :1391-1417
[4]   Sonication-assisted layer-by-layer deposition of gold nanoparticles for highly conductive gold patterns [J].
Basarir, Fevzihan ;
Yoon, Tae-Ho .
ULTRASONICS SONOCHEMISTRY, 2012, 19 (03) :621-626
[5]   Surface modification of tobacco mosaic virus with "Click" chemistry [J].
Bruckman, Michael A. ;
Kaur, Gagandeep ;
Lee, L. Andrew ;
Xie, Fang ;
Sepulvecla, Jennifer ;
Breitenkamp, Rebecca ;
Zhang, Xiongfei ;
Joralemon, Maisie ;
Russell, Thomas P. ;
Emrick, Todd ;
Wang, Qian .
CHEMBIOCHEM, 2008, 9 (04) :519-523
[6]   Tuning the Photothermal Effect of Carboxylated-Coated Silver Nanoparticles through pH-Induced Reversible Aggregation [J].
Cativa, Nancy M. ;
dell'Erba, Ignacio E. ;
Waiman, Carolina, V ;
Arenas, Gustavo F. ;
Ceolin, Marcelo ;
Giovanetti, Lisandro J. ;
Ramallo-Lopez, Jose M. ;
Elicabe, Guillermo ;
Hoppe, Cristina E. .
LANGMUIR, 2020, 36 (46) :13998-14008
[7]   Near-Infrared Chiral Plasmonic Microwires through Precision Assembly of Gold Nanorods on Soft Biotemplates [J].
Chakraborty, Amrita ;
Nonappa ;
Mondal, Biswajit ;
Chaudhari, Kamalesh ;
Rekola, Heikki ;
Hynninen, Ville ;
Kostiainen, Mauri A. ;
Ras, Robin H. A. ;
Pradeep, Thalappil .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (05) :3256-3267
[8]   Plasmonic Nanostructures for Photothermal Conversion [J].
Chen, Jinxing ;
Ye, Zuyang ;
Yang, Fan ;
Yin, Yadong .
SMALL SCIENCE, 2021, 1 (02)
[9]   Potato virus A particles-A versatile material for self-assembled nanopatterned surfaces [J].
De, Swarnalok ;
Nguyen, Hoang M. ;
Liljestrom, Ville ;
Makinen, Kristiina ;
Kostiainen, Mauri A. ;
Vapaavuori, Jaana .
VIROLOGY, 2023, 578 :103-110
[10]   Solar transparent radiators based on in-plane worm-like assemblies of metal nanoparticles [J].
Guo, Min ;
Gao, Linjiao ;
Wei, Yi ;
Ma, Ying ;
Yu Jianyong ;
Ding, Bin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 219