Cascaded adaptive global localisation network for steel defect detection

被引:6
|
作者
Yu, Jianbo [1 ,2 ,5 ]
Wang, Yanshu [1 ]
Li, Qingfeng [3 ]
Li, Hao [4 ]
Ma, Mingyan [4 ]
Liu, Peilun [4 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
[2] Beijing Aerosp Automat Control Inst, Natl Aerosp Intelligence Control Technol Lab, Beijing, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Inst, Hangzhou, Peoples R China
[4] COMAC Shanghai Aircraft Mfg Co Ltd, Shanghai, Peoples R China
[5] Beijing Aerosp Automat Control Inst Natl Aerosp, Intelligence Control Technol Lab, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Steel defect; defect detection; deep neural network; anchor-free network; attention mechanism;
D O I
10.1080/00207543.2023.2281664
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Defect detection is crucial in ensuring the quality of steel products. This paper proposes a novel deep neural network, cascaded adaptive global location network (CAGLNet), for detecting steel surface defects. The main objective of this study is to address the challenges associated with the irregular shape and dense spatial distribution of defects on steel. To achieve this goal, CAGLNet integrates a feature extraction network that combines residual and feature pyramid networks, a cascade adaptive tree-structure region proposal network (CAT-RPN) that eliminates the need for prior knowledge, and a global localisation regression for steel defect detection. This paper evaluates the effectiveness of CAGLNet on the NEU-DET dataset and demonstrates that the proposed model achieves an average accuracy of 85.40% with a fast frames per second of 10.06, outperforming those state-of-the-art methods. These results suggest that CAGLNet has the potential to significantly improve the effectiveness of defect detection in industrial production processes, leading to increased production yield and cost savings.Abbreviations: AT-RPN, adaptive tree-structure region proposal network; CAGLNet, cascaded adaptive global location network; CAT-RPN, cascade adaptive tree-structure region proposal network; CNN, convolutional neural network; DNN, deep neural network; EPNet, edge proposal network; FPN, feature pyramid network; FCOS, fully convolutional one-stage detector; FPS, frames per second; GMM, Gaussian mixture model; IoU, intersection-over-union; ROIAlign, region of interest align; RPN, region proposal network; ResNet, residual network; ResNet50_FPN, residual network and feature pyramid network; SABL, side aware boundary localisation; SSD, single-shot multiBox detector; TPE, Tree-structured Parzen estimator
引用
收藏
页码:4884 / 4901
页数:18
相关论文
共 50 条
  • [31] A Cascaded Zoom-In Method for Defect Detection of Solder Joints
    Zhang, Zhiwei
    Wang, Hua
    Zhou, Shengmin
    Zhou, Ronghua
    Sun, Lei
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 1081 - 1086
  • [32] Multiobjective backbone network architecture search based on transfer learning in steel defect detection
    Zhao, Tianchen
    Wang, Xianpeng
    Song, Xiangman
    NEUROCOMPUTING, 2025, 635
  • [33] EFS-YOLO: a lightweight network based on steel strip surface defect detection
    Chen, Beilong
    Wei, Mingjun
    Liu, Jianuo
    Li, Hui
    Dai, Chenxu
    Liu, Jinyun
    Ji, Zhanlin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [34] SnakeNet: An adaptive network for small object and complex background for insulator surface defect detection
    Tao, Zhiyong
    He, Yan
    Lin, Sen
    Yi, Tingjun
    Li, Minglang
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 117
  • [35] Adaptive Dual Attention Fusion Network for RGB-D Surface Defect Detection
    Jiang, Xiaoheng
    Liu, Jingqi
    Yan, Feng
    Lu, Yang
    Jin, Shaohui
    Liu, Hao
    Xu, Mingliang
    PATTERN RECOGNITION AND COMPUTER VISION, PT IX, PRCV 2024, 2025, 15039 : 392 - 406
  • [36] A multiple feature-maps interaction pyramid network for defect detection of steel surface
    Zhao, Xinyue
    Zhao, Jindong
    He, Zaixing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (05)
  • [37] Enhancing Magnetic Ring Defect Detection With Partially Adaptive Context-Enhanced Module Plugged Into Feature Pyramid Network
    Lai, Xinquan
    Li, Zhengfeng
    Lou, Shuntian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [38] Steel Surface Defect Detection Method Based on Improved YOLOv9 Network
    Zou, Jialin
    Wang, Hongcheng
    IEEE ACCESS, 2024, 12 : 124160 - 124170
  • [39] Surface Defect Detection of Rolled Steel Based on Lightweight Model
    Zhou, Shunyong
    Zeng, Yalan
    Li, Sicheng
    Zhu, Hao
    Liu, Xue
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [40] High-Frequency Dual-Branch Network for Steel Small Defect Detection
    Ma, Chi
    Li, Zhigang
    Xue, Yueyuan
    Li, Shujie
    Sun, Xiaochuan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 7409 - 7421