Cascaded adaptive global localisation network for steel defect detection

被引:6
|
作者
Yu, Jianbo [1 ,2 ,5 ]
Wang, Yanshu [1 ]
Li, Qingfeng [3 ]
Li, Hao [4 ]
Ma, Mingyan [4 ]
Liu, Peilun [4 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
[2] Beijing Aerosp Automat Control Inst, Natl Aerosp Intelligence Control Technol Lab, Beijing, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Inst, Hangzhou, Peoples R China
[4] COMAC Shanghai Aircraft Mfg Co Ltd, Shanghai, Peoples R China
[5] Beijing Aerosp Automat Control Inst Natl Aerosp, Intelligence Control Technol Lab, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Steel defect; defect detection; deep neural network; anchor-free network; attention mechanism;
D O I
10.1080/00207543.2023.2281664
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Defect detection is crucial in ensuring the quality of steel products. This paper proposes a novel deep neural network, cascaded adaptive global location network (CAGLNet), for detecting steel surface defects. The main objective of this study is to address the challenges associated with the irregular shape and dense spatial distribution of defects on steel. To achieve this goal, CAGLNet integrates a feature extraction network that combines residual and feature pyramid networks, a cascade adaptive tree-structure region proposal network (CAT-RPN) that eliminates the need for prior knowledge, and a global localisation regression for steel defect detection. This paper evaluates the effectiveness of CAGLNet on the NEU-DET dataset and demonstrates that the proposed model achieves an average accuracy of 85.40% with a fast frames per second of 10.06, outperforming those state-of-the-art methods. These results suggest that CAGLNet has the potential to significantly improve the effectiveness of defect detection in industrial production processes, leading to increased production yield and cost savings.Abbreviations: AT-RPN, adaptive tree-structure region proposal network; CAGLNet, cascaded adaptive global location network; CAT-RPN, cascade adaptive tree-structure region proposal network; CNN, convolutional neural network; DNN, deep neural network; EPNet, edge proposal network; FPN, feature pyramid network; FCOS, fully convolutional one-stage detector; FPS, frames per second; GMM, Gaussian mixture model; IoU, intersection-over-union; ROIAlign, region of interest align; RPN, region proposal network; ResNet, residual network; ResNet50_FPN, residual network and feature pyramid network; SABL, side aware boundary localisation; SSD, single-shot multiBox detector; TPE, Tree-structured Parzen estimator
引用
收藏
页码:4884 / 4901
页数:18
相关论文
共 50 条
  • [1] AFF-Net: A Strip Steel Surface Defect Detection Network via Adaptive Focusing Features
    Du, Yongzhao
    Chen, Haixin
    Fu, Yuqing
    Zhu, Jianqing
    Zeng, Huanqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [2] Adaptive convolutional neural network for aluminum surface defect detection
    Wang, Yu
    Wei, Yun-Sheng
    Wu, Zhi-Ze
    He, Zhi-Huang
    Wang, Kai
    Ding, Ze-Sheng
    Zou, Le
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 227
  • [3] Surface Defect Detection of Steel Strip with Double Pyramid Network
    Zhou, Xinwen
    Wei, Mengen
    Li, Qianglong
    Fu, Yinghua
    Gan, Yangzhou
    Liu, Hao
    Ruan, Jing
    Liang, Jiuzhen
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [4] An Adaptive Defect-Aware Attention Network for Accurate PCB-Defect Detection
    Liu, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [5] A Cascaded Network for Surface Defect Detection on Lead Frames in Production Lines
    Xu, Zhen
    Zhao, Weidong
    Jia, Ning
    Liu, Xianhui
    Wei, Mingyue
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [6] Defect detection of printed circuit board based on adaptive key-points localization network
    Yu, Jianbo
    Zhao, Lixiang
    Wang, Yanshu
    Ge, Yifan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 193
  • [7] An Adaptive Anchor Neural Network for Defect Detection in Aluminum Profiles Images
    Dong, Liangjie
    Wang, Huan
    Xu, Bo
    Zheng, Yaoyue
    Shi, Yarong
    Xu, Tao
    Tian, Zhiqiang
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [8] Lightweight defect detection network based on steel strip raw images
    Huang, Yue
    Chen, Zhen
    Chen, Zhaoxiang
    Zhou, Di
    Pan, Ershun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [9] Defect Detection in Steel Using a Hybrid Attention Network
    Zhou, Mudan
    Lu, Wentao
    Xia, Jingbo
    Wang, Yuhao
    SENSORS, 2023, 23 (15)
  • [10] Inception Dual Network for steel strip defect detection
    Liu, Zheng
    Wang, Xusheng
    Chen, Xiong
    PROCEEDINGS OF THE 2019 IEEE 16TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2019), 2019, : 409 - 414