Salt Anion Amphiphilicity-Activated Electrolyte Cosolvent Selection Strategy toward Durable Zn Metal Anode

被引:65
作者
Liu, Liyang [1 ,2 ,3 ]
Lu, Haiying [2 ]
Han, Chao [4 ]
Chen, Xianfei [5 ]
Liu, Sucheng [2 ]
Zhang, Jiakui [2 ]
Chen, Xianghong [2 ]
Wang, Xinyi [3 ]
Wang, Rui [2 ]
Xu, Jiantie [2 ]
Liu, Hua Kun [3 ,6 ]
Dou, Shi Xue [3 ,6 ]
Li, Weijie [1 ,3 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, Guangdong Prov Key Lab Atmospher Environm & Pollut, Natl Engn Lab VOCs Pollut Control Technol & Equipm, Guangzhou 510640, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong 2522, Australia
[4] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[5] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[6] Univ Shanghai Sci & Technol, Inst Energy Mat Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
cosolvent selectionstrategy; salt anion; amphiphilicity; core-shellsolvation structure; aqueous zincbatteries;
D O I
10.1021/acsnano.3c08716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One effective solution to inhibit side reactions and Zn dendrite growth in aqueous Zn-ion batteries is to add a cosolvent into the Zn-(CF3SO3)(2) electrolyte, which has the potential to form a robust solid electrolyte interface composed of ZnF2 and ZnS. Nevertheless, there is still a lack of discussion on a convenient selection method for cosolvents, which can directly reflect the interactions between solvent and solute to rationally design the electrolyte solvation structure. Herein, logP, where P is the octanol-water partition coefficient, a general parameter to describe the hydrophilicity and lipophilicity of chemicals, is proposed as a standard for selecting cosolvents for Zn-(CF(3)SO3)(2) electrolyte, which is demonstrated by testing seven different types of solvents. The solvent with a logP value similar to that of the salt anion CF3SO3 - can interact with CF3SO3 (-), Zn2+, and H2O, leading to a reconstruction of the electrolyte solvation structure. To prove the concept, methyl acetate (MA) is demonstrated as an example due to its similar logP value to that of CF3SO3 -. Both the experimental and theoretical results illustrate that MA molecules not only enter into the solvation shell of CF3SO3 (-) but also coordinate with Zn2+ or H2O, forming an MA and CF3SO3 (-) involved core-shell solvation structure. The special solvation structure reduces H2O activity and contributes to forming an anion-induced ZnCO3-ZnF2-rich solid electrolyte interface. As a result, the Zn||Zn cell and Zn||NaV3O8 center dot 1.5H(2)O cell with MA-involved electrolyte exhibit superior performances to that with the MA-free electrolyte. This work provides an insight into electrolyte design via salt anion chemistry for high-performance Zn batteries.
引用
收藏
页码:23065 / 23078
页数:14
相关论文
共 64 条
[1]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[2]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[3]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[4]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[5]   Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery [J].
Chen, Yuelang ;
Yu, Zhiao ;
Rudnicki, Paul ;
Gong, Huaxin ;
Huang, Zhuojun ;
Kim, Sang Cheol ;
Lai, Jian-Cheng ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (44) :18703-18713
[6]   Non-Solvating and Low-Dielectricity Cosolvent for Anion-Derived Solid Electrolyte Interphases in Lithium Metal Batteries [J].
Ding, Jun-Fan ;
Xu, Rui ;
Yao, Nan ;
Chen, Xiang ;
Xiao, Ye ;
Yao, Yu-Xing ;
Yan, Chong ;
Xie, Jin ;
Huang, Jia-Qi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (20) :11442-11447
[7]   Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries†‡ [J].
Dong, Yang ;
Miao, Licheng ;
Ma, Guoqiang ;
Di, Shengli ;
Wang, Yuanyuan ;
Wang, Liubin ;
Xu, Jianzhong ;
Zhang, Ning .
CHEMICAL SCIENCE, 2021, 12 (16) :5843-5852
[8]   High-Capacity and Long-Life Zinc Electrodeposition Enabled by a Self-Healable and Desolvation Shield for Aqueous Zinc-Ion Batteries [J].
Du, Haoran ;
Zhao, Ruirui ;
Yang, Ying ;
Liu, Zhikang ;
Qie, Long ;
Huang, Yunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (10)
[9]   DERIVING CHEMICAL-PARAMETERS FROM ELECTROSTATIC POTENTIAL MAPS OF MOLECULAR ANIONS [J].
GADRE, SR ;
KOLMEL, C ;
SHRIVASTAVA, IH .
INORGANIC CHEMISTRY, 1992, 31 (11) :2279-2281
[10]   SOLVENT EFFECTS ON REACTIVITIES OF ORGANOMETALLIC COMPOUNDS [J].
GUTMANN, V .
COORDINATION CHEMISTRY REVIEWS, 1976, 18 (02) :225-255